Limits...
Principles for high-quality, high-value testing.

Power M, Fell G, Wright M - Evid Based Med (2012)

Bottom Line: A survey of doctors working in two large NHS hospitals identified over 120 laboratory tests, imaging investigations and investigational procedures that they considered not to be overused.A common suggestion in this survey was that more training was required.The core principles are: (1) Base testing practices on the best available evidence. (2) Apply the evidence on test performance with careful judgement. (3) Test efficiently. (4) Consider the value (and affordability) of a test before requesting it. (5) Be aware of the downsides and drivers of overdiagnosis. (6) Confront uncertainties. (7) Be patient-centred in your approach. (8) Consider ethical issues. (9) Be aware of normal cognitive limitations and biases when testing. (10) Follow the 'knowledge journey' when teaching and learning these core principles.

View Article: PubMed Central - PubMed

Affiliation: Pharmacy Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK. Michael.Power@NUTH.NHS.UK

ABSTRACT
A survey of doctors working in two large NHS hospitals identified over 120 laboratory tests, imaging investigations and investigational procedures that they considered not to be overused. A common suggestion in this survey was that more training was required. And, this prompted the development of a list of core principles for high-quality, high-value testing. The list can be used as a framework for training and as a reference source. The core principles are: (1) Base testing practices on the best available evidence. (2) Apply the evidence on test performance with careful judgement. (3) Test efficiently. (4) Consider the value (and affordability) of a test before requesting it. (5) Be aware of the downsides and drivers of overdiagnosis. (6) Confront uncertainties. (7) Be patient-centred in your approach. (8) Consider ethical issues. (9) Be aware of normal cognitive limitations and biases when testing. (10) Follow the 'knowledge journey' when teaching and learning these core principles.

Show MeSH
Rules of thumb for testing when sensitivity and specificity are 80–90%, and positive and negative likelihood ratios 4–9 and 0.3–0.1.5 The horizontal line shows the threshold for action. Upward-sloping lines point to positive predictive values. Downward-sloping lines point to negative predictive values. The angles of the prediction lines reflect the likelihood ratios. Thick prediction lines show results that change management. Thin prediction lines show results that will not change management. The moderate slopes of the prediction lines reflect the combination of moderately high sensitivity and moderately high specificity. Prevalence categories are labelled ‘Don't test’ if the result of testing will not change management. This figure is only reproduced in colour in the online version.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3585491&req=5

EBMED2012100645F3: Rules of thumb for testing when sensitivity and specificity are 80–90%, and positive and negative likelihood ratios 4–9 and 0.3–0.1.5 The horizontal line shows the threshold for action. Upward-sloping lines point to positive predictive values. Downward-sloping lines point to negative predictive values. The angles of the prediction lines reflect the likelihood ratios. Thick prediction lines show results that change management. Thin prediction lines show results that will not change management. The moderate slopes of the prediction lines reflect the combination of moderately high sensitivity and moderately high specificity. Prevalence categories are labelled ‘Don't test’ if the result of testing will not change management. This figure is only reproduced in colour in the online version.

Mentions: As the evidence on prevalence and test performance is often imprecise, indirect or unknown, applying it to clinical decisions requires careful clinical judgement when estimating post-test probabilities.4 The four rules of thumb illustrated in figure 3 can help apply evidence on test performance to clinical practice.


Principles for high-quality, high-value testing.

Power M, Fell G, Wright M - Evid Based Med (2012)

Rules of thumb for testing when sensitivity and specificity are 80–90%, and positive and negative likelihood ratios 4–9 and 0.3–0.1.5 The horizontal line shows the threshold for action. Upward-sloping lines point to positive predictive values. Downward-sloping lines point to negative predictive values. The angles of the prediction lines reflect the likelihood ratios. Thick prediction lines show results that change management. Thin prediction lines show results that will not change management. The moderate slopes of the prediction lines reflect the combination of moderately high sensitivity and moderately high specificity. Prevalence categories are labelled ‘Don't test’ if the result of testing will not change management. This figure is only reproduced in colour in the online version.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3585491&req=5

EBMED2012100645F3: Rules of thumb for testing when sensitivity and specificity are 80–90%, and positive and negative likelihood ratios 4–9 and 0.3–0.1.5 The horizontal line shows the threshold for action. Upward-sloping lines point to positive predictive values. Downward-sloping lines point to negative predictive values. The angles of the prediction lines reflect the likelihood ratios. Thick prediction lines show results that change management. Thin prediction lines show results that will not change management. The moderate slopes of the prediction lines reflect the combination of moderately high sensitivity and moderately high specificity. Prevalence categories are labelled ‘Don't test’ if the result of testing will not change management. This figure is only reproduced in colour in the online version.
Mentions: As the evidence on prevalence and test performance is often imprecise, indirect or unknown, applying it to clinical decisions requires careful clinical judgement when estimating post-test probabilities.4 The four rules of thumb illustrated in figure 3 can help apply evidence on test performance to clinical practice.

Bottom Line: A survey of doctors working in two large NHS hospitals identified over 120 laboratory tests, imaging investigations and investigational procedures that they considered not to be overused.A common suggestion in this survey was that more training was required.The core principles are: (1) Base testing practices on the best available evidence. (2) Apply the evidence on test performance with careful judgement. (3) Test efficiently. (4) Consider the value (and affordability) of a test before requesting it. (5) Be aware of the downsides and drivers of overdiagnosis. (6) Confront uncertainties. (7) Be patient-centred in your approach. (8) Consider ethical issues. (9) Be aware of normal cognitive limitations and biases when testing. (10) Follow the 'knowledge journey' when teaching and learning these core principles.

View Article: PubMed Central - PubMed

Affiliation: Pharmacy Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK. Michael.Power@NUTH.NHS.UK

ABSTRACT
A survey of doctors working in two large NHS hospitals identified over 120 laboratory tests, imaging investigations and investigational procedures that they considered not to be overused. A common suggestion in this survey was that more training was required. And, this prompted the development of a list of core principles for high-quality, high-value testing. The list can be used as a framework for training and as a reference source. The core principles are: (1) Base testing practices on the best available evidence. (2) Apply the evidence on test performance with careful judgement. (3) Test efficiently. (4) Consider the value (and affordability) of a test before requesting it. (5) Be aware of the downsides and drivers of overdiagnosis. (6) Confront uncertainties. (7) Be patient-centred in your approach. (8) Consider ethical issues. (9) Be aware of normal cognitive limitations and biases when testing. (10) Follow the 'knowledge journey' when teaching and learning these core principles.

Show MeSH