Limits...
The use of biomonitoring data in exposure and human health risk assessment: benzene case study.

Arnold SM, Angerer J, Boogaard PJ, Hughes MF, O'Lone RB, Robison SH, Schnatter AR - Crit. Rev. Toxicol. (2013)

Bottom Line: The available data for benzene satisfied most of the Common Criteria and allowed for a risk-based evaluation of the benzene biomonitoring data.Smokers clearly have higher levels of benzene exposure, and biomarker levels of benzene for non-smokers are generally consistent with ambient air monitoring results.While some biomarkers of benzene are specific indicators of exposure, the interpretation of benzene biomonitoring levels in a health-risk context are complicated by issues associated with short half-lives and gaps in knowledge regarding the relationship between the biomarkers and subsequent toxic effects.

View Article: PubMed Central - PubMed

Affiliation: The Dow Chemical Company, Midland, MI 48674, USA. smarnold@dow.com

ABSTRACT
Abstract A framework of "Common Criteria" (i.e. a series of questions) has been developed to inform the use and evaluation of biomonitoring data in the context of human exposure and risk assessment. The data-rich chemical benzene was selected for use in a case study to assess whether refinement of the Common Criteria framework was necessary, and to gain additional perspective on approaches for integrating biomonitoring data into a risk-based context. The available data for benzene satisfied most of the Common Criteria and allowed for a risk-based evaluation of the benzene biomonitoring data. In general, biomarker (blood benzene, urinary benzene and urinary S-phenylmercapturic acid) central tendency (i.e. mean, median and geometric mean) concentrations for non-smokers are at or below the predicted blood or urine concentrations that would correspond to exposure at the US Environmental Protection Agency reference concentration (30 µg/m(3)), but greater than blood or urine concentrations relating to the air concentration at the 1 × 10(-5) excess cancer risk (2.9 µg/m(3)). Smokers clearly have higher levels of benzene exposure, and biomarker levels of benzene for non-smokers are generally consistent with ambient air monitoring results. While some biomarkers of benzene are specific indicators of exposure, the interpretation of benzene biomonitoring levels in a health-risk context are complicated by issues associated with short half-lives and gaps in knowledge regarding the relationship between the biomarkers and subsequent toxic effects.

Show MeSH

Related in: MedlinePlus

Reported urinary benzene concentrations (central tendency) for the general population compared to the urinary concentration related to USEPA non-cancer and cancer benchmarks. Each bar represents a separate exposure population.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3585443&req=5

f4: Reported urinary benzene concentrations (central tendency) for the general population compared to the urinary concentration related to USEPA non-cancer and cancer benchmarks. Each bar represents a separate exposure population.

Mentions: Similar trends are seen for urinary benzene (Ayi Fanou et al., 2006; Bergamaschi et al., 1999; Fustinoni et al., 2005a,b; Ghittori et al., 1995; Kim et al., 2006a; Kivisto et al., 1997; Kok & Ong, 1994; Lagorio et al., 1998; Maestri et al., 1993; Ong et al., 1996; Pezzagno et al., 1999; Waidyanatha et al., 2001) and SPMA (Aston et al., 2002; Ayi Fanou et al., 2006; Boogaard & van Sittert, 1996; Crebelli et al., 2001; Einig et al., 1996; Fustinoni et al., 2005a; Garte et al., 2005; Ghittori et al., 1995, 1999; Hotz et al., 1997; Kim et al., 2006a; Kivisto et al., 1997; Maestri et al., 1993, 2005; Melikian et al., 1999b, 2002; Navasumrit et al., 2008; Pople et al., 2002; Stommel et al., 1989; Waidyanatha et al., 2004) biomonitoring data from North America, Europe, Asia and Africa (Figures 4 and 5). As expected, the urinary benzene and SPMA concentrations for smokers were generally higher than for non-smokers. The comparisons in Figures 4 and 5 should be evaluated with care because of the variability across the regression lines and the need to extrapolate below the range of measured exposure levels when deriving the urinary values corresponding to the air concentrations related to the USEPA RfC and 10−5 excess cancer risk level.Figure 4.


The use of biomonitoring data in exposure and human health risk assessment: benzene case study.

Arnold SM, Angerer J, Boogaard PJ, Hughes MF, O'Lone RB, Robison SH, Schnatter AR - Crit. Rev. Toxicol. (2013)

Reported urinary benzene concentrations (central tendency) for the general population compared to the urinary concentration related to USEPA non-cancer and cancer benchmarks. Each bar represents a separate exposure population.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3585443&req=5

f4: Reported urinary benzene concentrations (central tendency) for the general population compared to the urinary concentration related to USEPA non-cancer and cancer benchmarks. Each bar represents a separate exposure population.
Mentions: Similar trends are seen for urinary benzene (Ayi Fanou et al., 2006; Bergamaschi et al., 1999; Fustinoni et al., 2005a,b; Ghittori et al., 1995; Kim et al., 2006a; Kivisto et al., 1997; Kok & Ong, 1994; Lagorio et al., 1998; Maestri et al., 1993; Ong et al., 1996; Pezzagno et al., 1999; Waidyanatha et al., 2001) and SPMA (Aston et al., 2002; Ayi Fanou et al., 2006; Boogaard & van Sittert, 1996; Crebelli et al., 2001; Einig et al., 1996; Fustinoni et al., 2005a; Garte et al., 2005; Ghittori et al., 1995, 1999; Hotz et al., 1997; Kim et al., 2006a; Kivisto et al., 1997; Maestri et al., 1993, 2005; Melikian et al., 1999b, 2002; Navasumrit et al., 2008; Pople et al., 2002; Stommel et al., 1989; Waidyanatha et al., 2004) biomonitoring data from North America, Europe, Asia and Africa (Figures 4 and 5). As expected, the urinary benzene and SPMA concentrations for smokers were generally higher than for non-smokers. The comparisons in Figures 4 and 5 should be evaluated with care because of the variability across the regression lines and the need to extrapolate below the range of measured exposure levels when deriving the urinary values corresponding to the air concentrations related to the USEPA RfC and 10−5 excess cancer risk level.Figure 4.

Bottom Line: The available data for benzene satisfied most of the Common Criteria and allowed for a risk-based evaluation of the benzene biomonitoring data.Smokers clearly have higher levels of benzene exposure, and biomarker levels of benzene for non-smokers are generally consistent with ambient air monitoring results.While some biomarkers of benzene are specific indicators of exposure, the interpretation of benzene biomonitoring levels in a health-risk context are complicated by issues associated with short half-lives and gaps in knowledge regarding the relationship between the biomarkers and subsequent toxic effects.

View Article: PubMed Central - PubMed

Affiliation: The Dow Chemical Company, Midland, MI 48674, USA. smarnold@dow.com

ABSTRACT
Abstract A framework of "Common Criteria" (i.e. a series of questions) has been developed to inform the use and evaluation of biomonitoring data in the context of human exposure and risk assessment. The data-rich chemical benzene was selected for use in a case study to assess whether refinement of the Common Criteria framework was necessary, and to gain additional perspective on approaches for integrating biomonitoring data into a risk-based context. The available data for benzene satisfied most of the Common Criteria and allowed for a risk-based evaluation of the benzene biomonitoring data. In general, biomarker (blood benzene, urinary benzene and urinary S-phenylmercapturic acid) central tendency (i.e. mean, median and geometric mean) concentrations for non-smokers are at or below the predicted blood or urine concentrations that would correspond to exposure at the US Environmental Protection Agency reference concentration (30 µg/m(3)), but greater than blood or urine concentrations relating to the air concentration at the 1 × 10(-5) excess cancer risk (2.9 µg/m(3)). Smokers clearly have higher levels of benzene exposure, and biomarker levels of benzene for non-smokers are generally consistent with ambient air monitoring results. While some biomarkers of benzene are specific indicators of exposure, the interpretation of benzene biomonitoring levels in a health-risk context are complicated by issues associated with short half-lives and gaps in knowledge regarding the relationship between the biomarkers and subsequent toxic effects.

Show MeSH
Related in: MedlinePlus