Limits...
A genome-wide analysis of the LBD (LATERAL ORGAN BOUNDARIES domain) gene family in Malus domestica with a functional characterization of MdLBD11.

Wang X, Zhang S, Su L, Liu X, Hao Y - PLoS ONE (2013)

Bottom Line: At the same time, the expression analysis implied that members of this apple gene family were responsive to hormones and stress and that they may participate in hormone-mediated plant organogenesis, which was demonstrated with the overexpression of the apple LBD gene MdLBD11, resulting in an abnormal phenotype.This phenotype included upward curling leaves, delayed flowering, downward-pointing flowers, siliques and other abnormal traits.Based on these data, we concluded that the MdLBD genes may play an important role in apple growth and development as in Arabidopsis and other species.

View Article: PubMed Central - PubMed

Affiliation: National Key laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China.

ABSTRACT
The plant-specific LBD (LATERAL ORGAN BOUNDARIES domain) genes belong to a major family of transcription factor that encode a zinc finger-like domain. It has been shown that LBD genes play crucial roles in the growth and development of Arabidopsis and other plant species. However, no detailed information concerning this family is available for apple. In the present study, we analyzed the apple (Malus domestica) genome and identified 58 LBD genes. This gene family was tested for its phylogenetic relationships with homologous genes in the Arabidopsis genome, as well as its location in the genome, structure and expression. We also transformed one MdLBD gene into Arabidopsis to evaluate its function. Like Arabidopsis, apple LBD genes also have a conserved CX2CX6CX3C zinc finger-like domain in the N terminus and can be divided into two classes. The expression profile indicated that apple LBD genes exhibited a variety of expression patterns, suggesting that they have diverse functions. At the same time, the expression analysis implied that members of this apple gene family were responsive to hormones and stress and that they may participate in hormone-mediated plant organogenesis, which was demonstrated with the overexpression of the apple LBD gene MdLBD11, resulting in an abnormal phenotype. This phenotype included upward curling leaves, delayed flowering, downward-pointing flowers, siliques and other abnormal traits. Based on these data, we concluded that the MdLBD genes may play an important role in apple growth and development as in Arabidopsis and other species.

Show MeSH

Related in: MedlinePlus

Tissue-specific expression profiles and gene response for the MdLBD genes.A. Tissue-specific expression profiles of MdLBD genes. Expression levels of MdLBD genes were examined by semi-qRT-PCR in apple roots (R), stems (S), leaves (L), flowers (FL) and fruits (F). The MdACTIN was performed as an internal control. B. QRT-PCR analysis of MdLBD genes in response to multiple treatments. MdLBD genes expression treated by 15 mM KNO3 (15 mM KCl was treated as a control), hypoxia, and 100 µM of ABA, NAA, 6-BA, GA and BR, the MdACTIN was performed as an internal control.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3585328&req=5

pone-0057044-g005: Tissue-specific expression profiles and gene response for the MdLBD genes.A. Tissue-specific expression profiles of MdLBD genes. Expression levels of MdLBD genes were examined by semi-qRT-PCR in apple roots (R), stems (S), leaves (L), flowers (FL) and fruits (F). The MdACTIN was performed as an internal control. B. QRT-PCR analysis of MdLBD genes in response to multiple treatments. MdLBD genes expression treated by 15 mM KNO3 (15 mM KCl was treated as a control), hypoxia, and 100 µM of ABA, NAA, 6-BA, GA and BR, the MdACTIN was performed as an internal control.

Mentions: Semi-quantitative RT-PCR analysis was used to investigate the expression patterns of some of the MdLBD genes in the following organs: roots, stems, leaves, flowers and fruits. We found that transcripts of MdLBD genes could be detected in all tissues (Fig. 5A). Transcripts of MdLBD19 were detected mainly in roots and leaves, and transcripts of MdLBD40 were predominantly present in stems. Transcripts of MdLBD14 could be detected in all tissues except the leaves, and the expression of MdLBD42 could be detected in all organs except in flowers (Fig. 5A).


A genome-wide analysis of the LBD (LATERAL ORGAN BOUNDARIES domain) gene family in Malus domestica with a functional characterization of MdLBD11.

Wang X, Zhang S, Su L, Liu X, Hao Y - PLoS ONE (2013)

Tissue-specific expression profiles and gene response for the MdLBD genes.A. Tissue-specific expression profiles of MdLBD genes. Expression levels of MdLBD genes were examined by semi-qRT-PCR in apple roots (R), stems (S), leaves (L), flowers (FL) and fruits (F). The MdACTIN was performed as an internal control. B. QRT-PCR analysis of MdLBD genes in response to multiple treatments. MdLBD genes expression treated by 15 mM KNO3 (15 mM KCl was treated as a control), hypoxia, and 100 µM of ABA, NAA, 6-BA, GA and BR, the MdACTIN was performed as an internal control.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3585328&req=5

pone-0057044-g005: Tissue-specific expression profiles and gene response for the MdLBD genes.A. Tissue-specific expression profiles of MdLBD genes. Expression levels of MdLBD genes were examined by semi-qRT-PCR in apple roots (R), stems (S), leaves (L), flowers (FL) and fruits (F). The MdACTIN was performed as an internal control. B. QRT-PCR analysis of MdLBD genes in response to multiple treatments. MdLBD genes expression treated by 15 mM KNO3 (15 mM KCl was treated as a control), hypoxia, and 100 µM of ABA, NAA, 6-BA, GA and BR, the MdACTIN was performed as an internal control.
Mentions: Semi-quantitative RT-PCR analysis was used to investigate the expression patterns of some of the MdLBD genes in the following organs: roots, stems, leaves, flowers and fruits. We found that transcripts of MdLBD genes could be detected in all tissues (Fig. 5A). Transcripts of MdLBD19 were detected mainly in roots and leaves, and transcripts of MdLBD40 were predominantly present in stems. Transcripts of MdLBD14 could be detected in all tissues except the leaves, and the expression of MdLBD42 could be detected in all organs except in flowers (Fig. 5A).

Bottom Line: At the same time, the expression analysis implied that members of this apple gene family were responsive to hormones and stress and that they may participate in hormone-mediated plant organogenesis, which was demonstrated with the overexpression of the apple LBD gene MdLBD11, resulting in an abnormal phenotype.This phenotype included upward curling leaves, delayed flowering, downward-pointing flowers, siliques and other abnormal traits.Based on these data, we concluded that the MdLBD genes may play an important role in apple growth and development as in Arabidopsis and other species.

View Article: PubMed Central - PubMed

Affiliation: National Key laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China.

ABSTRACT
The plant-specific LBD (LATERAL ORGAN BOUNDARIES domain) genes belong to a major family of transcription factor that encode a zinc finger-like domain. It has been shown that LBD genes play crucial roles in the growth and development of Arabidopsis and other plant species. However, no detailed information concerning this family is available for apple. In the present study, we analyzed the apple (Malus domestica) genome and identified 58 LBD genes. This gene family was tested for its phylogenetic relationships with homologous genes in the Arabidopsis genome, as well as its location in the genome, structure and expression. We also transformed one MdLBD gene into Arabidopsis to evaluate its function. Like Arabidopsis, apple LBD genes also have a conserved CX2CX6CX3C zinc finger-like domain in the N terminus and can be divided into two classes. The expression profile indicated that apple LBD genes exhibited a variety of expression patterns, suggesting that they have diverse functions. At the same time, the expression analysis implied that members of this apple gene family were responsive to hormones and stress and that they may participate in hormone-mediated plant organogenesis, which was demonstrated with the overexpression of the apple LBD gene MdLBD11, resulting in an abnormal phenotype. This phenotype included upward curling leaves, delayed flowering, downward-pointing flowers, siliques and other abnormal traits. Based on these data, we concluded that the MdLBD genes may play an important role in apple growth and development as in Arabidopsis and other species.

Show MeSH
Related in: MedlinePlus