Limits...
De Novo transcriptome assembly (NGS) of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids.

Annadurai RS, Neethiraj R, Jayakumar V, Damodaran AC, Rao SN, Katta MA, Gopinathan S, Sarma SP, Senthilkumar V, Niranjan V, Gopinath A, Mugasimangalam RC - PLoS ONE (2013)

Bottom Line: Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects.We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical.Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

View Article: PubMed Central - PubMed

Affiliation: Research and Development Unit, Genotypic Technology Private Limited, Bangalore, Karnataka, India.

ABSTRACT
Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

Show MeSH

Related in: MedlinePlus

Top ten most represented GO terms in each of the three GO domains.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3585318&req=5

pone-0056217-g003: Top ten most represented GO terms in each of the three GO domains.

Mentions: GO annotation showed that the annotated RTs represent genes with diverse functionalities and are involved in various metabolic pathways. We observed 26,638, 37,689, and 31,759 GO terms representing Cellular component, Molecular function and Biological process categories. In the cellular component category, the terms integral to membrane and nucleus were observed to occur most frequently, constituting 16.3% (4,353) and 14.8% (3,932) of total cellular component entries respectively. ATP binding and DNA binding were found be the most frequently occurring under molecular function category, constituting 10.5% (3,951) and 4.9% (1,854). In the biological process category transcription,DNA-dependent and regulation of transcription,DNA-dependent were observed most frequently constituting 6.9% (2,181) and 4.6% (1,476). Of transcripts with an assigned biological process term, response to stress, defense response and response to salt stress were also observed to occur more frequently, together constituting 3.9% (1,241) (Figure 3). Since, the rhizome is buried in soil it is more prone to pathogen attacks and salt stress, hence it is expected to find defense and stress related terms in high numbers. Such higher occurrences of stress related categories, also indicates the possible presence of a large number of secondary metabolites.


De Novo transcriptome assembly (NGS) of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids.

Annadurai RS, Neethiraj R, Jayakumar V, Damodaran AC, Rao SN, Katta MA, Gopinathan S, Sarma SP, Senthilkumar V, Niranjan V, Gopinath A, Mugasimangalam RC - PLoS ONE (2013)

Top ten most represented GO terms in each of the three GO domains.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3585318&req=5

pone-0056217-g003: Top ten most represented GO terms in each of the three GO domains.
Mentions: GO annotation showed that the annotated RTs represent genes with diverse functionalities and are involved in various metabolic pathways. We observed 26,638, 37,689, and 31,759 GO terms representing Cellular component, Molecular function and Biological process categories. In the cellular component category, the terms integral to membrane and nucleus were observed to occur most frequently, constituting 16.3% (4,353) and 14.8% (3,932) of total cellular component entries respectively. ATP binding and DNA binding were found be the most frequently occurring under molecular function category, constituting 10.5% (3,951) and 4.9% (1,854). In the biological process category transcription,DNA-dependent and regulation of transcription,DNA-dependent were observed most frequently constituting 6.9% (2,181) and 4.6% (1,476). Of transcripts with an assigned biological process term, response to stress, defense response and response to salt stress were also observed to occur more frequently, together constituting 3.9% (1,241) (Figure 3). Since, the rhizome is buried in soil it is more prone to pathogen attacks and salt stress, hence it is expected to find defense and stress related terms in high numbers. Such higher occurrences of stress related categories, also indicates the possible presence of a large number of secondary metabolites.

Bottom Line: Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects.We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical.Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

View Article: PubMed Central - PubMed

Affiliation: Research and Development Unit, Genotypic Technology Private Limited, Bangalore, Karnataka, India.

ABSTRACT
Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

Show MeSH
Related in: MedlinePlus