Limits...
Resistance to Dutch elm disease reduces presence of xylem endophytic fungi in Elms (Ulmus spp.).

Martín JA, Witzell J, Blumenstein K, Rozpedowska E, Helander M, Sieber TN, Gil L - PLoS ONE (2013)

Bottom Line: Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity.The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark.We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Silvopascicultura, Escuela Técnica Superior de Ingenieros de Montes, Universidad Politécnica de Madrid, Madrid, Spain.

ABSTRACT
Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity. To address this issue, we compared the frequency and diversity of endophytic fungi and defensive phenolic metabolites in elm (Ulmus spp.) trees with genotypes known to differ in resistance to Dutch elm disease. Our results indicate that resistant U. minor and U. pumila genotypes exhibit a lower frequency and diversity of fungal endophytes in the xylem than susceptible U. minor genotypes. However, resistant and susceptible genotypes showed a similar frequency and diversity of endophytes in the leaves and bark. The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark. As the Dutch elm disease pathogen develops within xylem tissues, the defensive chemistry of resistant elm genotypes thus appears to be one of the factors that may limit colonization by both the pathogen and endophytes. We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide.

Show MeSH

Related in: MedlinePlus

Quantitative patterns of a rosmarinic acid derivative in elms.Mean peak area (AU×10−5) of one of the HPLC chromatogram peaks (RT = 24.47 min) of xylem samples that was important in discriminating between tree groups: P (R) = resistant U. pumila clones from Puerta de Hierro Forest Breeding Centre; M (R) = resistant U. minor clones from Puerta de Hierro Forest Breeding Centre; M (S) = susceptible U. minor clones from Puerta de Hierro Forest Breeding Centre; and M (F) = U. minor trees from Rivas-Vaciamadrid field site. Different letters indicate differences between groups of trees (P<0.05); bars represent standard errors [n = 4 for M(R) and M(S), 2 for P(R) or 7 M(F)].
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3585289&req=5

pone-0056987-g007: Quantitative patterns of a rosmarinic acid derivative in elms.Mean peak area (AU×10−5) of one of the HPLC chromatogram peaks (RT = 24.47 min) of xylem samples that was important in discriminating between tree groups: P (R) = resistant U. pumila clones from Puerta de Hierro Forest Breeding Centre; M (R) = resistant U. minor clones from Puerta de Hierro Forest Breeding Centre; M (S) = susceptible U. minor clones from Puerta de Hierro Forest Breeding Centre; and M (F) = U. minor trees from Rivas-Vaciamadrid field site. Different letters indicate differences between groups of trees (P<0.05); bars represent standard errors [n = 4 for M(R) and M(S), 2 for P(R) or 7 M(F)].

Mentions: The chromatogram peak at 24.47 min, identified as rosmarinic acid derivative, was one of the most significant peaks in discriminating between xylem samples. The area of this peak showed higher mean values for genetically susceptible trees [M (S) and M (F)] than for resistant trees [M (R) and P (R)] (Fig. 7).


Resistance to Dutch elm disease reduces presence of xylem endophytic fungi in Elms (Ulmus spp.).

Martín JA, Witzell J, Blumenstein K, Rozpedowska E, Helander M, Sieber TN, Gil L - PLoS ONE (2013)

Quantitative patterns of a rosmarinic acid derivative in elms.Mean peak area (AU×10−5) of one of the HPLC chromatogram peaks (RT = 24.47 min) of xylem samples that was important in discriminating between tree groups: P (R) = resistant U. pumila clones from Puerta de Hierro Forest Breeding Centre; M (R) = resistant U. minor clones from Puerta de Hierro Forest Breeding Centre; M (S) = susceptible U. minor clones from Puerta de Hierro Forest Breeding Centre; and M (F) = U. minor trees from Rivas-Vaciamadrid field site. Different letters indicate differences between groups of trees (P<0.05); bars represent standard errors [n = 4 for M(R) and M(S), 2 for P(R) or 7 M(F)].
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3585289&req=5

pone-0056987-g007: Quantitative patterns of a rosmarinic acid derivative in elms.Mean peak area (AU×10−5) of one of the HPLC chromatogram peaks (RT = 24.47 min) of xylem samples that was important in discriminating between tree groups: P (R) = resistant U. pumila clones from Puerta de Hierro Forest Breeding Centre; M (R) = resistant U. minor clones from Puerta de Hierro Forest Breeding Centre; M (S) = susceptible U. minor clones from Puerta de Hierro Forest Breeding Centre; and M (F) = U. minor trees from Rivas-Vaciamadrid field site. Different letters indicate differences between groups of trees (P<0.05); bars represent standard errors [n = 4 for M(R) and M(S), 2 for P(R) or 7 M(F)].
Mentions: The chromatogram peak at 24.47 min, identified as rosmarinic acid derivative, was one of the most significant peaks in discriminating between xylem samples. The area of this peak showed higher mean values for genetically susceptible trees [M (S) and M (F)] than for resistant trees [M (R) and P (R)] (Fig. 7).

Bottom Line: Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity.The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark.We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Silvopascicultura, Escuela Técnica Superior de Ingenieros de Montes, Universidad Politécnica de Madrid, Madrid, Spain.

ABSTRACT
Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity. To address this issue, we compared the frequency and diversity of endophytic fungi and defensive phenolic metabolites in elm (Ulmus spp.) trees with genotypes known to differ in resistance to Dutch elm disease. Our results indicate that resistant U. minor and U. pumila genotypes exhibit a lower frequency and diversity of fungal endophytes in the xylem than susceptible U. minor genotypes. However, resistant and susceptible genotypes showed a similar frequency and diversity of endophytes in the leaves and bark. The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark. As the Dutch elm disease pathogen develops within xylem tissues, the defensive chemistry of resistant elm genotypes thus appears to be one of the factors that may limit colonization by both the pathogen and endophytes. We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide.

Show MeSH
Related in: MedlinePlus