Limits...
Resistance to Dutch elm disease reduces presence of xylem endophytic fungi in Elms (Ulmus spp.).

Martín JA, Witzell J, Blumenstein K, Rozpedowska E, Helander M, Sieber TN, Gil L - PLoS ONE (2013)

Bottom Line: Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity.The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark.We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Silvopascicultura, Escuela Técnica Superior de Ingenieros de Montes, Universidad Politécnica de Madrid, Madrid, Spain.

ABSTRACT
Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity. To address this issue, we compared the frequency and diversity of endophytic fungi and defensive phenolic metabolites in elm (Ulmus spp.) trees with genotypes known to differ in resistance to Dutch elm disease. Our results indicate that resistant U. minor and U. pumila genotypes exhibit a lower frequency and diversity of fungal endophytes in the xylem than susceptible U. minor genotypes. However, resistant and susceptible genotypes showed a similar frequency and diversity of endophytes in the leaves and bark. The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark. As the Dutch elm disease pathogen develops within xylem tissues, the defensive chemistry of resistant elm genotypes thus appears to be one of the factors that may limit colonization by both the pathogen and endophytes. We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide.

Show MeSH

Related in: MedlinePlus

Separation of elm trees on basis of tissue specific phenolic profiles.Discriminant function analysis score scatter plot for the HPLC chromatogram peaks of samples taken from leaf (a), bark (b), and xylem (c) tissues from different groups of trees: P (R) = resistant U. pumila clones from Puerta de Hierro Forest Breeding Centre; M (R) = resistant U. minor clones from Puerta de Hierro Forest Breeding Centre; M (S) = susceptible U. minor clones from Puerta de Hierro Forest Breeding Centre; and M (F) = U. minor trees from the Rivas-Vaciamadrid site.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3585289&req=5

pone-0056987-g006: Separation of elm trees on basis of tissue specific phenolic profiles.Discriminant function analysis score scatter plot for the HPLC chromatogram peaks of samples taken from leaf (a), bark (b), and xylem (c) tissues from different groups of trees: P (R) = resistant U. pumila clones from Puerta de Hierro Forest Breeding Centre; M (R) = resistant U. minor clones from Puerta de Hierro Forest Breeding Centre; M (S) = susceptible U. minor clones from Puerta de Hierro Forest Breeding Centre; and M (F) = U. minor trees from the Rivas-Vaciamadrid site.

Mentions: The DFA of the chemical variables (chromatogram peaks) was used to obtain the scatter plot of the scores from the first two DFs (Fig. 6). For the leaf samples (Fig. 6a), DF1 was significant at P<0.001, and could be used to distinguish between U. minor (positive scores) and U. pumila (negative scores) samples (Fig. 6a). DF2 (P = 0.02) could be used to distinguish between U. minor samples from the Breeding Centre [both M (R) and M (S)] and those from the field site [M (F)].


Resistance to Dutch elm disease reduces presence of xylem endophytic fungi in Elms (Ulmus spp.).

Martín JA, Witzell J, Blumenstein K, Rozpedowska E, Helander M, Sieber TN, Gil L - PLoS ONE (2013)

Separation of elm trees on basis of tissue specific phenolic profiles.Discriminant function analysis score scatter plot for the HPLC chromatogram peaks of samples taken from leaf (a), bark (b), and xylem (c) tissues from different groups of trees: P (R) = resistant U. pumila clones from Puerta de Hierro Forest Breeding Centre; M (R) = resistant U. minor clones from Puerta de Hierro Forest Breeding Centre; M (S) = susceptible U. minor clones from Puerta de Hierro Forest Breeding Centre; and M (F) = U. minor trees from the Rivas-Vaciamadrid site.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3585289&req=5

pone-0056987-g006: Separation of elm trees on basis of tissue specific phenolic profiles.Discriminant function analysis score scatter plot for the HPLC chromatogram peaks of samples taken from leaf (a), bark (b), and xylem (c) tissues from different groups of trees: P (R) = resistant U. pumila clones from Puerta de Hierro Forest Breeding Centre; M (R) = resistant U. minor clones from Puerta de Hierro Forest Breeding Centre; M (S) = susceptible U. minor clones from Puerta de Hierro Forest Breeding Centre; and M (F) = U. minor trees from the Rivas-Vaciamadrid site.
Mentions: The DFA of the chemical variables (chromatogram peaks) was used to obtain the scatter plot of the scores from the first two DFs (Fig. 6). For the leaf samples (Fig. 6a), DF1 was significant at P<0.001, and could be used to distinguish between U. minor (positive scores) and U. pumila (negative scores) samples (Fig. 6a). DF2 (P = 0.02) could be used to distinguish between U. minor samples from the Breeding Centre [both M (R) and M (S)] and those from the field site [M (F)].

Bottom Line: Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity.The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark.We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Silvopascicultura, Escuela Técnica Superior de Ingenieros de Montes, Universidad Politécnica de Madrid, Madrid, Spain.

ABSTRACT
Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity. To address this issue, we compared the frequency and diversity of endophytic fungi and defensive phenolic metabolites in elm (Ulmus spp.) trees with genotypes known to differ in resistance to Dutch elm disease. Our results indicate that resistant U. minor and U. pumila genotypes exhibit a lower frequency and diversity of fungal endophytes in the xylem than susceptible U. minor genotypes. However, resistant and susceptible genotypes showed a similar frequency and diversity of endophytes in the leaves and bark. The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark. As the Dutch elm disease pathogen develops within xylem tissues, the defensive chemistry of resistant elm genotypes thus appears to be one of the factors that may limit colonization by both the pathogen and endophytes. We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide.

Show MeSH
Related in: MedlinePlus