Limits...
Antioxidant, antityrosinase and antitumor activity comparison: the potential utilization of fibrous root part of Bletilla striata (Thunb.) Reichb.f.

Jiang F, Li W, Huang Y, Chen Y, Jin B, Chen N, Ding Z, Ding X - PLoS ONE (2013)

Bottom Line: The chemical composition, total phenolic content, DPPH radical scavenging activity, Ferric-reducing antioxidant power and tyrosinase inhibition activity were compared between FRP and PSP.Antioxidant and pro-oxidant effect as well as antitumor effect of the extract of FRP and PSP were analyzed by in vitro cell system as well.Moreover, In vitro cell system analysis confirmed that FRP extract exerts comparable activity with PSP, especially, the sub-fraction sch of FRP showed better antioxidant activity at low dosage and stronger per-oxidant activity at high dosage, and both sch of FRP and PSP can dose-dependent induce HepG2 cells apoptosis, which implied tumor therapeutic effect.

View Article: PubMed Central - PubMed

Affiliation: Institute of Biotechnology, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.

ABSTRACT
This study was carried out to evaluate the utilization probability of the fibrous root part (FRP) of Bletilla striata, which was usually discarded and harvesting pseudobulb part (PSP). The chemical composition, total phenolic content, DPPH radical scavenging activity, Ferric-reducing antioxidant power and tyrosinase inhibition activity were compared between FRP and PSP. Antioxidant and pro-oxidant effect as well as antitumor effect of the extract of FRP and PSP were analyzed by in vitro cell system as well. Thin layer chromatography and high performance liquid chromatography analysis indicated that the chemical compositions in the two parts were similar, but the content in FRP was much higher than PSP. Meanwhile, the FRP extracts showed higher phenolic content, stronger DPPH scavenging activity, Ferric-reducing antioxidant capacity and tyrosinase inhibition activity. Sub-fraction analysis revealed that the distribution characteristic of phenolic components and other active constituents in FRP and PSP were consistent, and mainly deposited in chloroform and acetoacetate fractions. Especially, the chloroform sub-fraction (sch) of FRP showed extraordinary DPPH scavenging activity and tyrosinase inhibition activity, with IC50 0.848 mg/L and 4.3 mg/L, respectively. Besides, tyrosinase inhibition activity was even stronger than the positive compound arbutin (31.8 mg/L). Moreover, In vitro cell system analysis confirmed that FRP extract exerts comparable activity with PSP, especially, the sub-fraction sch of FRP showed better antioxidant activity at low dosage and stronger per-oxidant activity at high dosage, and both sch of FRP and PSP can dose-dependent induce HepG2 cells apoptosis, which implied tumor therapeutic effect. Considering that an additional 0.3 kg FRP would be obtained when producing 1.0 kg PSP, our work demonstrated that FRP is very potential to be used together with PSP.

Show MeSH

Related in: MedlinePlus

Sub-fractions induce HepG2 impairment and apoptosis.HepG2 cells were exposure in different sub-fractions and concentrations for 24h, and then cell viability and apoptosis were assessed as reported in the ‘Materials and Methods’ section. (A) Cell viability, (B) apoptosis and (C) necrosis in presence of the indicated sub-fraction concentration. Data are expressed as percent of control (CTRL). (A–D) * Significantly different from the control, P<0.05; n = 3.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3585276&req=5

pone-0058004-g008: Sub-fractions induce HepG2 impairment and apoptosis.HepG2 cells were exposure in different sub-fractions and concentrations for 24h, and then cell viability and apoptosis were assessed as reported in the ‘Materials and Methods’ section. (A) Cell viability, (B) apoptosis and (C) necrosis in presence of the indicated sub-fraction concentration. Data are expressed as percent of control (CTRL). (A–D) * Significantly different from the control, P<0.05; n = 3.

Mentions: Cell viability was evaluated by MTT assay. Survival rate of HepG2 cells were dose-dependently decreased in response to increasing concentration of sch sub-fractions for both FRP and PSP (Fig. 8A); however, inhibition activity of spe and sac sub-fractions at the dosage below 100 µg/ml was not significant (Fig. 8A), and inhibition activity of sbu and swa sub-fractions was absent. Obviously, the effect of decreased cell survival corresponding to increasing concentrations of sch sub-fractions were consistent with the increase in ROS levels (Fig. 7C). Flow cytometric analysis indicated that the sch sub-fraction of PSP could significantly induce cell apoptosis in a dose-dependent manner (Fig. 8B); however, while viability was decreased dose dependently (Fig. 8A), apoptosis did not increased (Fig. 8B), suggesting a potential shift toward a necrotic mechanism at high sch concentrations of FRP, which was confirmed by our flow cytometric assay (Fig. 8C). Moreover, sch sub-fractions induced cell apoptosis was reconfirmed by microscopic method. Low dosage (6.25 µg/ml) treatment of sch from both FRP (Fig. 9D-9F) and PSP showed no apoptosis or necrosis cells; however, when cells were exposed to 50 µg/ml, the cell numbers were decreased dramatically and the morphology were shrinked significantly (Fig. 9G–9L); increased apoptosis ratio with brighten Hoechst staining was obtained after treatment by sch of PSP (Fig. 9G–9I), while high necrosis ratio with PI staining was observed after treatment by sch of FRP (Fig. 9J–9L), which would be attributed to higher amount of active components from FRP than those from PSP (Fig. 3). Our data support those publications [20], [35] that high dosage antioxidant may exert pro-oxidant effect, and cause tumor cell apoptosis, but its underlining mechanism needs to be uncovered.


Antioxidant, antityrosinase and antitumor activity comparison: the potential utilization of fibrous root part of Bletilla striata (Thunb.) Reichb.f.

Jiang F, Li W, Huang Y, Chen Y, Jin B, Chen N, Ding Z, Ding X - PLoS ONE (2013)

Sub-fractions induce HepG2 impairment and apoptosis.HepG2 cells were exposure in different sub-fractions and concentrations for 24h, and then cell viability and apoptosis were assessed as reported in the ‘Materials and Methods’ section. (A) Cell viability, (B) apoptosis and (C) necrosis in presence of the indicated sub-fraction concentration. Data are expressed as percent of control (CTRL). (A–D) * Significantly different from the control, P<0.05; n = 3.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3585276&req=5

pone-0058004-g008: Sub-fractions induce HepG2 impairment and apoptosis.HepG2 cells were exposure in different sub-fractions and concentrations for 24h, and then cell viability and apoptosis were assessed as reported in the ‘Materials and Methods’ section. (A) Cell viability, (B) apoptosis and (C) necrosis in presence of the indicated sub-fraction concentration. Data are expressed as percent of control (CTRL). (A–D) * Significantly different from the control, P<0.05; n = 3.
Mentions: Cell viability was evaluated by MTT assay. Survival rate of HepG2 cells were dose-dependently decreased in response to increasing concentration of sch sub-fractions for both FRP and PSP (Fig. 8A); however, inhibition activity of spe and sac sub-fractions at the dosage below 100 µg/ml was not significant (Fig. 8A), and inhibition activity of sbu and swa sub-fractions was absent. Obviously, the effect of decreased cell survival corresponding to increasing concentrations of sch sub-fractions were consistent with the increase in ROS levels (Fig. 7C). Flow cytometric analysis indicated that the sch sub-fraction of PSP could significantly induce cell apoptosis in a dose-dependent manner (Fig. 8B); however, while viability was decreased dose dependently (Fig. 8A), apoptosis did not increased (Fig. 8B), suggesting a potential shift toward a necrotic mechanism at high sch concentrations of FRP, which was confirmed by our flow cytometric assay (Fig. 8C). Moreover, sch sub-fractions induced cell apoptosis was reconfirmed by microscopic method. Low dosage (6.25 µg/ml) treatment of sch from both FRP (Fig. 9D-9F) and PSP showed no apoptosis or necrosis cells; however, when cells were exposed to 50 µg/ml, the cell numbers were decreased dramatically and the morphology were shrinked significantly (Fig. 9G–9L); increased apoptosis ratio with brighten Hoechst staining was obtained after treatment by sch of PSP (Fig. 9G–9I), while high necrosis ratio with PI staining was observed after treatment by sch of FRP (Fig. 9J–9L), which would be attributed to higher amount of active components from FRP than those from PSP (Fig. 3). Our data support those publications [20], [35] that high dosage antioxidant may exert pro-oxidant effect, and cause tumor cell apoptosis, but its underlining mechanism needs to be uncovered.

Bottom Line: The chemical composition, total phenolic content, DPPH radical scavenging activity, Ferric-reducing antioxidant power and tyrosinase inhibition activity were compared between FRP and PSP.Antioxidant and pro-oxidant effect as well as antitumor effect of the extract of FRP and PSP were analyzed by in vitro cell system as well.Moreover, In vitro cell system analysis confirmed that FRP extract exerts comparable activity with PSP, especially, the sub-fraction sch of FRP showed better antioxidant activity at low dosage and stronger per-oxidant activity at high dosage, and both sch of FRP and PSP can dose-dependent induce HepG2 cells apoptosis, which implied tumor therapeutic effect.

View Article: PubMed Central - PubMed

Affiliation: Institute of Biotechnology, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.

ABSTRACT
This study was carried out to evaluate the utilization probability of the fibrous root part (FRP) of Bletilla striata, which was usually discarded and harvesting pseudobulb part (PSP). The chemical composition, total phenolic content, DPPH radical scavenging activity, Ferric-reducing antioxidant power and tyrosinase inhibition activity were compared between FRP and PSP. Antioxidant and pro-oxidant effect as well as antitumor effect of the extract of FRP and PSP were analyzed by in vitro cell system as well. Thin layer chromatography and high performance liquid chromatography analysis indicated that the chemical compositions in the two parts were similar, but the content in FRP was much higher than PSP. Meanwhile, the FRP extracts showed higher phenolic content, stronger DPPH scavenging activity, Ferric-reducing antioxidant capacity and tyrosinase inhibition activity. Sub-fraction analysis revealed that the distribution characteristic of phenolic components and other active constituents in FRP and PSP were consistent, and mainly deposited in chloroform and acetoacetate fractions. Especially, the chloroform sub-fraction (sch) of FRP showed extraordinary DPPH scavenging activity and tyrosinase inhibition activity, with IC50 0.848 mg/L and 4.3 mg/L, respectively. Besides, tyrosinase inhibition activity was even stronger than the positive compound arbutin (31.8 mg/L). Moreover, In vitro cell system analysis confirmed that FRP extract exerts comparable activity with PSP, especially, the sub-fraction sch of FRP showed better antioxidant activity at low dosage and stronger per-oxidant activity at high dosage, and both sch of FRP and PSP can dose-dependent induce HepG2 cells apoptosis, which implied tumor therapeutic effect. Considering that an additional 0.3 kg FRP would be obtained when producing 1.0 kg PSP, our work demonstrated that FRP is very potential to be used together with PSP.

Show MeSH
Related in: MedlinePlus