Limits...
Impact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest.

Huang JG, Bergeron Y, Berninger F, Zhai L, Tardif JC, Denneler B - PLoS ONE (2013)

Bottom Line: Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming.The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming.Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere.

View Article: PubMed Central - PubMed

Affiliation: Chaire industrielle CRSNG-UQAT-UQAM en Aménagement Forestier Durable, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec, Canada. huang500@purdue.edu

ABSTRACT
Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010-2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere.

Show MeSH

Related in: MedlinePlus

The predicted mean growth change of trembling aspen, paper birch, black spruce, and jack pine at 48, 51 and 54°N under the A-model.The pie plots indicate the proportion of variance in mean potential growth change explained by, counter clock wise, the calibration models (dark), scenarios (grey), calibration models *scenarios (darker grey), and climate (blue). The grey zones are 95% confidence interval. White dashed lines indicate the estimation of mean growth change with uncertainties.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3585260&req=5

pone-0056758-g003: The predicted mean growth change of trembling aspen, paper birch, black spruce, and jack pine at 48, 51 and 54°N under the A-model.The pie plots indicate the proportion of variance in mean potential growth change explained by, counter clock wise, the calibration models (dark), scenarios (grey), calibration models *scenarios (darker grey), and climate (blue). The grey zones are 95% confidence interval. White dashed lines indicate the estimation of mean growth change with uncertainties.

Mentions: As shown in Fig. 3 and Fig. 4, the A-model simulation results indicate that aspen would have a positive MGC (10–15% growth increase) during 2010–2099 at 53–54°N, and a moderate growth increase (less than 10%) during 2010–2069 followed by a growth decrease (less than 10%) during 2070–2099 at 50–51°N. For stands at 49°N, a moderate growth increase (less than 8%) during 2010–2049 was predicted, followed by growth fluctuations (increases/decreases) during 2050–2069 and a growth decrease (less than 10%) after 2070. For stands at 48°N, a low growth increase (less than 5%) during the next one or two decades followed by a gradual growth decrease thereafter were simulated, with a large 95% confidence interval. As shown by the pie plot in Fig. 3 and Fig. 4, the results of partitioning the variance showed that from south to north the variance in simulated MGC explained by climate variability increases (53.5% to 73.4%), whereas that explained by the calibration models decreases (40.9% to 18.4%). Both together accounted for the largest proportion of the variance, yet other factors like climate change scenarios and scenario×calibration model interactions explained only very little variance.


Impact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest.

Huang JG, Bergeron Y, Berninger F, Zhai L, Tardif JC, Denneler B - PLoS ONE (2013)

The predicted mean growth change of trembling aspen, paper birch, black spruce, and jack pine at 48, 51 and 54°N under the A-model.The pie plots indicate the proportion of variance in mean potential growth change explained by, counter clock wise, the calibration models (dark), scenarios (grey), calibration models *scenarios (darker grey), and climate (blue). The grey zones are 95% confidence interval. White dashed lines indicate the estimation of mean growth change with uncertainties.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3585260&req=5

pone-0056758-g003: The predicted mean growth change of trembling aspen, paper birch, black spruce, and jack pine at 48, 51 and 54°N under the A-model.The pie plots indicate the proportion of variance in mean potential growth change explained by, counter clock wise, the calibration models (dark), scenarios (grey), calibration models *scenarios (darker grey), and climate (blue). The grey zones are 95% confidence interval. White dashed lines indicate the estimation of mean growth change with uncertainties.
Mentions: As shown in Fig. 3 and Fig. 4, the A-model simulation results indicate that aspen would have a positive MGC (10–15% growth increase) during 2010–2099 at 53–54°N, and a moderate growth increase (less than 10%) during 2010–2069 followed by a growth decrease (less than 10%) during 2070–2099 at 50–51°N. For stands at 49°N, a moderate growth increase (less than 8%) during 2010–2049 was predicted, followed by growth fluctuations (increases/decreases) during 2050–2069 and a growth decrease (less than 10%) after 2070. For stands at 48°N, a low growth increase (less than 5%) during the next one or two decades followed by a gradual growth decrease thereafter were simulated, with a large 95% confidence interval. As shown by the pie plot in Fig. 3 and Fig. 4, the results of partitioning the variance showed that from south to north the variance in simulated MGC explained by climate variability increases (53.5% to 73.4%), whereas that explained by the calibration models decreases (40.9% to 18.4%). Both together accounted for the largest proportion of the variance, yet other factors like climate change scenarios and scenario×calibration model interactions explained only very little variance.

Bottom Line: Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming.The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming.Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere.

View Article: PubMed Central - PubMed

Affiliation: Chaire industrielle CRSNG-UQAT-UQAM en Aménagement Forestier Durable, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec, Canada. huang500@purdue.edu

ABSTRACT
Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010-2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere.

Show MeSH
Related in: MedlinePlus