Limits...
Troponin and anti-troponin autoantibody levels in patients with ventricular noncompaction.

Erer HB, Güvenç TS, Kemik AS, Yılmaz HY, Kul Ş, Altay S, Sayar N, Kaya Y, Eren M - PLoS ONE (2013)

Bottom Line: Depending on ejection fraction, patients were grouped into noncompaction with preserved EF (LVEF >50%, n = 24) and noncompaction with reduced EF (LVEF <35%, n = 26) groups.Troponin I, troponin T, anti-troponin I IgM and anti-troponin T IgM were measured with sandwich immunoassay method using a commercially available kit.Patients with noncompaction had significantly higher troponin I (28.98±9.21 ng/ml in NCNE group and 28.11±10.42 ng/ml in NCLE group), troponin T (22.17±6.97 pg/ml in NCNE group and 22.78±7.76 pg/ml in NCLE group) and antitroponin I IgM (1.92±0.43 µg/ml in NCNE group and 1.79±0.36 µg/ml in NCLE group) levels compared to control group, while antitroponin T IgM and IgG were only elevated in patients with noncompaction and reduced EF (15.81±6.52 µg/ml for IgM and 16.46±6.25 µg/ml for IgG).

View Article: PubMed Central - PubMed

Affiliation: Dr. Siyami Ersek Cardiovascular and Thoracic Surgery Research and Training Hospital, Department of Cardiology, İstanbul, Turkey.

ABSTRACT
Ventricular hypertrabeculation/noncompaction is a morphologic and functional anomaly of myocardium characterized by prominent trabeculae accompanied by deep recessus. Dilated cardiomyopathy with left ventricular failure is observed in these patients, while the cause or pathophysiologic nature of this complication is not known. Anti-troponin antibodies are formed against circulating cardiac troponins after an acute coronary event or conditions associated with chronic myocyte necrosis, such as dilated cardiomyopathy. In present study, we aimed to investigate cardiac troponins and anti troponin autoantibodies in ventricular noncompaction/hypertrabeculation patients with/without reduced ejection fraction. A total of 50 patients with ventricular noncompaction and 23 healthy volunteers were included in this study. Noncompaction/hypertrabeculation was diagnosed with two-dimensional echocardiography using appropriate criteria. Depending on ejection fraction, patients were grouped into noncompaction with preserved EF (LVEF >50%, n = 24) and noncompaction with reduced EF (LVEF <35%, n = 26) groups. Troponin I, troponin T, anti-troponin I IgM and anti-troponin T IgM were measured with sandwich immunoassay method using a commercially available kit. Patients with noncompaction had significantly higher troponin I (28.98±9.21 ng/ml in NCNE group and 28.11±10.42 ng/ml in NCLE group), troponin T (22.17±6.97 pg/ml in NCNE group and 22.78±7.76 pg/ml in NCLE group) and antitroponin I IgM (1.92±0.43 µg/ml in NCNE group and 1.79±0.36 µg/ml in NCLE group) levels compared to control group, while antitroponin T IgM and IgG were only elevated in patients with noncompaction and reduced EF (15.81±6.52 µg/ml for IgM and 16.46±6.25 µg/ml for IgG). Elevated cardiac troponins and anti-troponin I autoantibodies were observed in patients with noncompaction preceding the decline in systolic function and could indicate ongoing myocardial damage in these patients.

Show MeSH

Related in: MedlinePlus

Real-time three-dimensional echocardiographic appearance from parasternal short-axis view of a patient with isolated left ventricular noncompaction.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3585198&req=5

pone-0057648-g001: Real-time three-dimensional echocardiographic appearance from parasternal short-axis view of a patient with isolated left ventricular noncompaction.

Mentions: Echocardiographic examination was performed with an echocardiography platform (GE Vivid 7, GE Healthcare, Piscataway, New Jersey, USA) equipped with a 1.5–3.6 MHz phased-array transducer. Diagnosis of noncompaction was established when all of these conditions were satisfied from parasternal short-axis view: observation of three or more prominent trabeculations, deep recessus in contact with blood, and a noncompacted-to-compacted myocardium of more than 2 during systole [10], [11] (Figure 1). For all patients, the diagnosis was confirmed by two cardiologists with experience in transthoracic echocardiography (HBE and NS). End-diastolic and end systolic volume of left ventricle, as well as left ventricular ejection fraction were calculated using biplane Simpson method from apical four-chamber and two chamber views. Number of segments with hypertrabeculation/noncompaction was calculated from parasternal short axis views at basal, mid and apical sections of left ventricle using 16-segment model. Mitral E and A values were measured from the tips of mitral leaflets with pulsed-wave Doppler in apical 4-chamber view. Isovolumic contraction time (IVCT) and isovolumic relaxation time (IVRT) were measured with continuous-wave (CW) Doppler with cursor aligned to record both mitral inflow and aortic outflow velocities from apical long axis view. Aortic ejection time (AET) was measured from aortic outflow recordings taken with CW Doppler from apical long axis view. Early diastolic velocity of mitral annulus (Em) was measured from the lateral aspect of mitral valve with TDI from apical 4-chamber view. Left ventricular myocardial performance index was calculated as (IVCT+IVRT)/AET. For all enrolled subjects, a detailed echocardiogram was carried out to rule out other types of cardiomyopathy, more than mild valvular diseases or congenital defects.


Troponin and anti-troponin autoantibody levels in patients with ventricular noncompaction.

Erer HB, Güvenç TS, Kemik AS, Yılmaz HY, Kul Ş, Altay S, Sayar N, Kaya Y, Eren M - PLoS ONE (2013)

Real-time three-dimensional echocardiographic appearance from parasternal short-axis view of a patient with isolated left ventricular noncompaction.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3585198&req=5

pone-0057648-g001: Real-time three-dimensional echocardiographic appearance from parasternal short-axis view of a patient with isolated left ventricular noncompaction.
Mentions: Echocardiographic examination was performed with an echocardiography platform (GE Vivid 7, GE Healthcare, Piscataway, New Jersey, USA) equipped with a 1.5–3.6 MHz phased-array transducer. Diagnosis of noncompaction was established when all of these conditions were satisfied from parasternal short-axis view: observation of three or more prominent trabeculations, deep recessus in contact with blood, and a noncompacted-to-compacted myocardium of more than 2 during systole [10], [11] (Figure 1). For all patients, the diagnosis was confirmed by two cardiologists with experience in transthoracic echocardiography (HBE and NS). End-diastolic and end systolic volume of left ventricle, as well as left ventricular ejection fraction were calculated using biplane Simpson method from apical four-chamber and two chamber views. Number of segments with hypertrabeculation/noncompaction was calculated from parasternal short axis views at basal, mid and apical sections of left ventricle using 16-segment model. Mitral E and A values were measured from the tips of mitral leaflets with pulsed-wave Doppler in apical 4-chamber view. Isovolumic contraction time (IVCT) and isovolumic relaxation time (IVRT) were measured with continuous-wave (CW) Doppler with cursor aligned to record both mitral inflow and aortic outflow velocities from apical long axis view. Aortic ejection time (AET) was measured from aortic outflow recordings taken with CW Doppler from apical long axis view. Early diastolic velocity of mitral annulus (Em) was measured from the lateral aspect of mitral valve with TDI from apical 4-chamber view. Left ventricular myocardial performance index was calculated as (IVCT+IVRT)/AET. For all enrolled subjects, a detailed echocardiogram was carried out to rule out other types of cardiomyopathy, more than mild valvular diseases or congenital defects.

Bottom Line: Depending on ejection fraction, patients were grouped into noncompaction with preserved EF (LVEF >50%, n = 24) and noncompaction with reduced EF (LVEF <35%, n = 26) groups.Troponin I, troponin T, anti-troponin I IgM and anti-troponin T IgM were measured with sandwich immunoassay method using a commercially available kit.Patients with noncompaction had significantly higher troponin I (28.98±9.21 ng/ml in NCNE group and 28.11±10.42 ng/ml in NCLE group), troponin T (22.17±6.97 pg/ml in NCNE group and 22.78±7.76 pg/ml in NCLE group) and antitroponin I IgM (1.92±0.43 µg/ml in NCNE group and 1.79±0.36 µg/ml in NCLE group) levels compared to control group, while antitroponin T IgM and IgG were only elevated in patients with noncompaction and reduced EF (15.81±6.52 µg/ml for IgM and 16.46±6.25 µg/ml for IgG).

View Article: PubMed Central - PubMed

Affiliation: Dr. Siyami Ersek Cardiovascular and Thoracic Surgery Research and Training Hospital, Department of Cardiology, İstanbul, Turkey.

ABSTRACT
Ventricular hypertrabeculation/noncompaction is a morphologic and functional anomaly of myocardium characterized by prominent trabeculae accompanied by deep recessus. Dilated cardiomyopathy with left ventricular failure is observed in these patients, while the cause or pathophysiologic nature of this complication is not known. Anti-troponin antibodies are formed against circulating cardiac troponins after an acute coronary event or conditions associated with chronic myocyte necrosis, such as dilated cardiomyopathy. In present study, we aimed to investigate cardiac troponins and anti troponin autoantibodies in ventricular noncompaction/hypertrabeculation patients with/without reduced ejection fraction. A total of 50 patients with ventricular noncompaction and 23 healthy volunteers were included in this study. Noncompaction/hypertrabeculation was diagnosed with two-dimensional echocardiography using appropriate criteria. Depending on ejection fraction, patients were grouped into noncompaction with preserved EF (LVEF >50%, n = 24) and noncompaction with reduced EF (LVEF <35%, n = 26) groups. Troponin I, troponin T, anti-troponin I IgM and anti-troponin T IgM were measured with sandwich immunoassay method using a commercially available kit. Patients with noncompaction had significantly higher troponin I (28.98±9.21 ng/ml in NCNE group and 28.11±10.42 ng/ml in NCLE group), troponin T (22.17±6.97 pg/ml in NCNE group and 22.78±7.76 pg/ml in NCLE group) and antitroponin I IgM (1.92±0.43 µg/ml in NCNE group and 1.79±0.36 µg/ml in NCLE group) levels compared to control group, while antitroponin T IgM and IgG were only elevated in patients with noncompaction and reduced EF (15.81±6.52 µg/ml for IgM and 16.46±6.25 µg/ml for IgG). Elevated cardiac troponins and anti-troponin I autoantibodies were observed in patients with noncompaction preceding the decline in systolic function and could indicate ongoing myocardial damage in these patients.

Show MeSH
Related in: MedlinePlus