Limits...
Treatment with 670 nm light up regulates cytochrome C oxidase expression and reduces inflammation in an age-related macular degeneration model.

Begum R, Powner MB, Hudson N, Hogg C, Jeffery G - PLoS ONE (2013)

Bottom Line: Inflammation is an umbrella feature of ageing.In ageing and in AMD mitochondrial function declines.Further, inflammation can be reduced independent of Aβ.

View Article: PubMed Central - PubMed

Affiliation: Institute of Ophthalmology, University College London, London, United Kingdom.

ABSTRACT
Inflammation is an umbrella feature of ageing. It is present in the aged retina and many retinal diseases including age-related macular degeneration (AMD). In ageing and in AMD mitochondrial function declines. In normal ageing this can be manipulated by brief exposure to 670 nm light on the retina, which increases mitochondrial membrane potential and reduces inflammation. Here we ask if 670 nm exposure has the same ability in an aged mouse model of AMD, the complement factor H knockout (CFH(-/-)) where inflammation is a key feature. Further, we ask whether this occurs when 670 nm is delivered briefly in environmental lighting rather than directly focussed on the retina. Mice were exposed to 670 nm for 6 minutes twice a day for 14 days in the form of supplemented environmental light. Exposed animals had significant increase in cytochrome c oxidase (COX), which is a mitochondrial enzyme regulating oxidative phosphorylation.There was a significant reduction in complement component C3, an inflammatory marker in the outer retina. Vimetin and glial fibrillary acidic protein (GFAP) expression, which reflect retinal stress in Muller glia, were also significantly down regulated. There were also significant changes in outer retinal macrophage morphology. However, amyloid beta (Aβ) load, which also increases with age in the outer retina and is pro-inflammatory, did not change. Hence, 670 nm is effective in reducing inflammation probably via COX activation in mice with a genotype similar to that in 50% of AMD patients even when brief exposures are delivered via environmental lighting. Further, inflammation can be reduced independent of Aβ. The efficacy revealed here supports current early stage clinical trials of 670 nm in AMD patients.

Show MeSH

Related in: MedlinePlus

Spectral composition of room light in which mice were caged.The spectrum was measured directly under the room light which had an opaque cover (blue line) and again in the cage (red line), which did not receive any direct room illumination. The measurements for the cage are X 10 of those for the room light. As common with room lighting, it is primarily composed of a series of discrete peaks, however none of these are close to 670 nm.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3585189&req=5

pone-0057828-g002: Spectral composition of room light in which mice were caged.The spectrum was measured directly under the room light which had an opaque cover (blue line) and again in the cage (red line), which did not receive any direct room illumination. The measurements for the cage are X 10 of those for the room light. As common with room lighting, it is primarily composed of a series of discrete peaks, however none of these are close to 670 nm.

Mentions: The spectrum of the room illumination was measured at 0.5 m below the light source and within the cage with an Ocean Optics (USB2000+UV-VIS-ES, Dunedin, USA), showing minimal 670 nm content (Figure 2). Room illumination was indirect. The experimental group were exposed to 670 nm light via LED sources (C.H. Electronics, UK) behind clear perspex screens at either end of the cage (Figure 1). Spectral (Ocean Optics) and intensity measurements with a radiometer (International Lights, IL 1700 SED033IF/W, Massachusetts, USA) were made directly in front of the source and behind the perspex screens. There was no spectral shift as a consequence of the perspex screen and only vary minimal attenuation in intensity.


Treatment with 670 nm light up regulates cytochrome C oxidase expression and reduces inflammation in an age-related macular degeneration model.

Begum R, Powner MB, Hudson N, Hogg C, Jeffery G - PLoS ONE (2013)

Spectral composition of room light in which mice were caged.The spectrum was measured directly under the room light which had an opaque cover (blue line) and again in the cage (red line), which did not receive any direct room illumination. The measurements for the cage are X 10 of those for the room light. As common with room lighting, it is primarily composed of a series of discrete peaks, however none of these are close to 670 nm.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3585189&req=5

pone-0057828-g002: Spectral composition of room light in which mice were caged.The spectrum was measured directly under the room light which had an opaque cover (blue line) and again in the cage (red line), which did not receive any direct room illumination. The measurements for the cage are X 10 of those for the room light. As common with room lighting, it is primarily composed of a series of discrete peaks, however none of these are close to 670 nm.
Mentions: The spectrum of the room illumination was measured at 0.5 m below the light source and within the cage with an Ocean Optics (USB2000+UV-VIS-ES, Dunedin, USA), showing minimal 670 nm content (Figure 2). Room illumination was indirect. The experimental group were exposed to 670 nm light via LED sources (C.H. Electronics, UK) behind clear perspex screens at either end of the cage (Figure 1). Spectral (Ocean Optics) and intensity measurements with a radiometer (International Lights, IL 1700 SED033IF/W, Massachusetts, USA) were made directly in front of the source and behind the perspex screens. There was no spectral shift as a consequence of the perspex screen and only vary minimal attenuation in intensity.

Bottom Line: Inflammation is an umbrella feature of ageing.In ageing and in AMD mitochondrial function declines.Further, inflammation can be reduced independent of Aβ.

View Article: PubMed Central - PubMed

Affiliation: Institute of Ophthalmology, University College London, London, United Kingdom.

ABSTRACT
Inflammation is an umbrella feature of ageing. It is present in the aged retina and many retinal diseases including age-related macular degeneration (AMD). In ageing and in AMD mitochondrial function declines. In normal ageing this can be manipulated by brief exposure to 670 nm light on the retina, which increases mitochondrial membrane potential and reduces inflammation. Here we ask if 670 nm exposure has the same ability in an aged mouse model of AMD, the complement factor H knockout (CFH(-/-)) where inflammation is a key feature. Further, we ask whether this occurs when 670 nm is delivered briefly in environmental lighting rather than directly focussed on the retina. Mice were exposed to 670 nm for 6 minutes twice a day for 14 days in the form of supplemented environmental light. Exposed animals had significant increase in cytochrome c oxidase (COX), which is a mitochondrial enzyme regulating oxidative phosphorylation.There was a significant reduction in complement component C3, an inflammatory marker in the outer retina. Vimetin and glial fibrillary acidic protein (GFAP) expression, which reflect retinal stress in Muller glia, were also significantly down regulated. There were also significant changes in outer retinal macrophage morphology. However, amyloid beta (Aβ) load, which also increases with age in the outer retina and is pro-inflammatory, did not change. Hence, 670 nm is effective in reducing inflammation probably via COX activation in mice with a genotype similar to that in 50% of AMD patients even when brief exposures are delivered via environmental lighting. Further, inflammation can be reduced independent of Aβ. The efficacy revealed here supports current early stage clinical trials of 670 nm in AMD patients.

Show MeSH
Related in: MedlinePlus