Limits...
Net expression inhibits the growth of pancreatic ductal adenocarcinoma cell PL45 in vitro and in vivo.

Li B, Wan X, Zhu Q, Li L, Zeng Y, Hu D, Qian Y, Lu L, Wang X, Meng X - PLoS ONE (2013)

Bottom Line: Thus, it is important to better understand its molecular mechanisms and to develop more effective treatments for the disease.The ternary complex factor Net, which exerts its strong inhibitory function on transcription of proto-oncogene gene c-fos by forming ternary complexes with a second transcription factor, has been suspected of being involved in pancreatic cancer and other tumors biology.Furthermore, using in vitro and in vivo model systems, we found that overexpression of Net inhibited cell growth and survival and induced cell apoptosis in human pancreatic ductal adenocarcinoma cell PL45; the mechanisms by which Net inhibited the cell cycle progression were mainly through P21-Cyclin D1/CDK4 Pathway.

View Article: PubMed Central - PubMed

Affiliation: Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.

ABSTRACT
Pancreatic ductal adenocarcinoma has a poor prognosis due to late diagnosis and a lack of effective therapeutic options. Thus, it is important to better understand its molecular mechanisms and to develop more effective treatments for the disease. The ternary complex factor Net, which exerts its strong inhibitory function on transcription of proto-oncogene gene c-fos by forming ternary complexes with a second transcription factor, has been suspected of being involved in pancreatic cancer and other tumors biology. In this study, we found that the majority of pancreatic ductal adenocarcinoma tissues and cell lines had weak or no expression of Net, whereas significantly high level of Net expression occurred in paired adjacent normal tissues we studied. Furthermore, using in vitro and in vivo model systems, we found that overexpression of Net inhibited cell growth and survival and induced cell apoptosis in human pancreatic ductal adenocarcinoma cell PL45; the mechanisms by which Net inhibited the cell cycle progression were mainly through P21-Cyclin D1/CDK4 Pathway. Our data thus suggested that Net might play an important role in pancreatic carcinogenesis, possibly by acting as a tumor suppressor gene.

Show MeSH

Related in: MedlinePlus

Net inhibited growth and proliferation in pancreatic ductal adenocarcinoma cell PL45.(A) Growth of PL45 cells transfected with or without Ad5/F35-Net was measured by MTT assay. (B)The growth curve of PL45 cells transfected with or without Ad5/F35-Net was obtained by counting cell numbers per well on each day. (C) Colony formation assay was performed using PL45 cells transfected with or without Ad5/F35-Net after 48 h. (D) Cell cycle of PL45 cells transfected with or without Ad5/F35-Net was evaluated. (E) Cell cycle related genes were examined at mRNA and protein levels 48 hours after Ad5/F35-Net transfection. *p<0.05, **p<0.01.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3585156&req=5

pone-0057818-g002: Net inhibited growth and proliferation in pancreatic ductal adenocarcinoma cell PL45.(A) Growth of PL45 cells transfected with or without Ad5/F35-Net was measured by MTT assay. (B)The growth curve of PL45 cells transfected with or without Ad5/F35-Net was obtained by counting cell numbers per well on each day. (C) Colony formation assay was performed using PL45 cells transfected with or without Ad5/F35-Net after 48 h. (D) Cell cycle of PL45 cells transfected with or without Ad5/F35-Net was evaluated. (E) Cell cycle related genes were examined at mRNA and protein levels 48 hours after Ad5/F35-Net transfection. *p<0.05, **p<0.01.

Mentions: PL45 cells that expressed low level of Net were transfected with adenovirus vector that encodes Net (Ad5/F35-Net) to make cells that expressed high level of Net. Cells were examined for growth and proliferation following transfection. Results indicated that the growth and proliferation ability of PL45 cell transfected with Ad5/F35-Net was significantly inhibited in relative to PL45 cells without transfection (control) or transfected with control vector Ad5/F35-GFP (P<0.01) (Fig. 2A, 2B); The number of colony formation was significantly reduced as well in cells transfected with Ad5/F35-Net (Fig. 2C). All those results suggested that Net play a role in inhibiting the proliferation of pancreatic ductal adenocarcinoma cell PL45. Moreover, cell cycle results revealed that most of PL45 cells transfected with Ad5/F35-Net were delayed in G0/G1 phase (59.96±8.54%) after 48 hours transfection in comparing with cells transfected with Ad5/F35-GFP (44.45±4.75%) or control PL45 cells (44.45±4.75%) respectively. The cells in S phase (26.57±5.64%) were significantly lower in cells transfected with Ad5/F35-Net than that in cells transfected with Ad5/F35-GFP (45.73±4.68%) or control cells (45.84±5.36%) (Fig. 2D) (P<0.01), which suggested that the overexpression of Net can delay pancreatic ductal adenocarcinoma cell PL45 at G0/G1 phase.


Net expression inhibits the growth of pancreatic ductal adenocarcinoma cell PL45 in vitro and in vivo.

Li B, Wan X, Zhu Q, Li L, Zeng Y, Hu D, Qian Y, Lu L, Wang X, Meng X - PLoS ONE (2013)

Net inhibited growth and proliferation in pancreatic ductal adenocarcinoma cell PL45.(A) Growth of PL45 cells transfected with or without Ad5/F35-Net was measured by MTT assay. (B)The growth curve of PL45 cells transfected with or without Ad5/F35-Net was obtained by counting cell numbers per well on each day. (C) Colony formation assay was performed using PL45 cells transfected with or without Ad5/F35-Net after 48 h. (D) Cell cycle of PL45 cells transfected with or without Ad5/F35-Net was evaluated. (E) Cell cycle related genes were examined at mRNA and protein levels 48 hours after Ad5/F35-Net transfection. *p<0.05, **p<0.01.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3585156&req=5

pone-0057818-g002: Net inhibited growth and proliferation in pancreatic ductal adenocarcinoma cell PL45.(A) Growth of PL45 cells transfected with or without Ad5/F35-Net was measured by MTT assay. (B)The growth curve of PL45 cells transfected with or without Ad5/F35-Net was obtained by counting cell numbers per well on each day. (C) Colony formation assay was performed using PL45 cells transfected with or without Ad5/F35-Net after 48 h. (D) Cell cycle of PL45 cells transfected with or without Ad5/F35-Net was evaluated. (E) Cell cycle related genes were examined at mRNA and protein levels 48 hours after Ad5/F35-Net transfection. *p<0.05, **p<0.01.
Mentions: PL45 cells that expressed low level of Net were transfected with adenovirus vector that encodes Net (Ad5/F35-Net) to make cells that expressed high level of Net. Cells were examined for growth and proliferation following transfection. Results indicated that the growth and proliferation ability of PL45 cell transfected with Ad5/F35-Net was significantly inhibited in relative to PL45 cells without transfection (control) or transfected with control vector Ad5/F35-GFP (P<0.01) (Fig. 2A, 2B); The number of colony formation was significantly reduced as well in cells transfected with Ad5/F35-Net (Fig. 2C). All those results suggested that Net play a role in inhibiting the proliferation of pancreatic ductal adenocarcinoma cell PL45. Moreover, cell cycle results revealed that most of PL45 cells transfected with Ad5/F35-Net were delayed in G0/G1 phase (59.96±8.54%) after 48 hours transfection in comparing with cells transfected with Ad5/F35-GFP (44.45±4.75%) or control PL45 cells (44.45±4.75%) respectively. The cells in S phase (26.57±5.64%) were significantly lower in cells transfected with Ad5/F35-Net than that in cells transfected with Ad5/F35-GFP (45.73±4.68%) or control cells (45.84±5.36%) (Fig. 2D) (P<0.01), which suggested that the overexpression of Net can delay pancreatic ductal adenocarcinoma cell PL45 at G0/G1 phase.

Bottom Line: Thus, it is important to better understand its molecular mechanisms and to develop more effective treatments for the disease.The ternary complex factor Net, which exerts its strong inhibitory function on transcription of proto-oncogene gene c-fos by forming ternary complexes with a second transcription factor, has been suspected of being involved in pancreatic cancer and other tumors biology.Furthermore, using in vitro and in vivo model systems, we found that overexpression of Net inhibited cell growth and survival and induced cell apoptosis in human pancreatic ductal adenocarcinoma cell PL45; the mechanisms by which Net inhibited the cell cycle progression were mainly through P21-Cyclin D1/CDK4 Pathway.

View Article: PubMed Central - PubMed

Affiliation: Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.

ABSTRACT
Pancreatic ductal adenocarcinoma has a poor prognosis due to late diagnosis and a lack of effective therapeutic options. Thus, it is important to better understand its molecular mechanisms and to develop more effective treatments for the disease. The ternary complex factor Net, which exerts its strong inhibitory function on transcription of proto-oncogene gene c-fos by forming ternary complexes with a second transcription factor, has been suspected of being involved in pancreatic cancer and other tumors biology. In this study, we found that the majority of pancreatic ductal adenocarcinoma tissues and cell lines had weak or no expression of Net, whereas significantly high level of Net expression occurred in paired adjacent normal tissues we studied. Furthermore, using in vitro and in vivo model systems, we found that overexpression of Net inhibited cell growth and survival and induced cell apoptosis in human pancreatic ductal adenocarcinoma cell PL45; the mechanisms by which Net inhibited the cell cycle progression were mainly through P21-Cyclin D1/CDK4 Pathway. Our data thus suggested that Net might play an important role in pancreatic carcinogenesis, possibly by acting as a tumor suppressor gene.

Show MeSH
Related in: MedlinePlus