Limits...
Standardizing visual control devices for tsetse flies: East African species Glossina swynnertoni.

Mramba F, Oloo F, Byamungu M, Kröber T, McMullin A, Mihok S, Guerin PM - PLoS Negl Trop Dis (2013)

Bottom Line: Here we set out to standardize long-lasting, visually-attractive devices for Glossina swynnertoni, a vector of both human and animal trypanosomiasis in open savannah in Tanzania and Kenya, and in neighbouring conservation areas used by pastoralists.Baiting with chemicals did not affect the relative performance of devices.Leg panels and 0.5 m(2) cloth targets show promise as cost effective devices for management of G. swynnertoni as they can be used for both control (insecticide-impregnated cloth) and for sampling (rigid plastic with insect glue or adhesive film) of populations.

View Article: PubMed Central - PubMed

Affiliation: Tsetse and Trypanosomiasis Research Institute, Tanga, Tanzania.

ABSTRACT

Background: Here we set out to standardize long-lasting, visually-attractive devices for Glossina swynnertoni, a vector of both human and animal trypanosomiasis in open savannah in Tanzania and Kenya, and in neighbouring conservation areas used by pastoralists. The goal was to determine the most practical device/material that would induce the strongest landing response in G. swynnertoni for use in area-wide population suppression of this fly with insecticide-impregnated devices.

Methods and findings: Trials were conducted in wet and dry seasons in the Serengeti and Maasai Mara to measure the performance of traps and targets of different sizes and colours, with and without chemical baits, at different population densities and under different environmental conditions. Adhesive film was used as a simple enumerator at these remote locations to compare trapping efficiencies of devices. Independent of season or presence of chemical baits, targets in phthalogen blue or turquoise blue cloth with adhesive film were the best devices for capturing G. swynnertoni in all situations, catching up to 19 times more flies than pyramidal traps. Baiting with chemicals did not affect the relative performance of devices. Fly landings were two times higher on 1 m(2) blue-black targets as on pyramidal traps when equivalent areas of both were covered with adhesive film. Landings on 1 m(2) blue-black targets were compared to those on smaller phthalogen blue 0.5 m(2) all-blue or blue-black-blue cloth targets, and to landings on all-blue plastic 0.32-0.47 m(2) leg panels painted in phthalogen blue. These smaller targets and leg panels captured equivalent numbers of G. swynnertoni per unit area as bigger targets.

Conclusions: Leg panels and 0.5 m(2) cloth targets show promise as cost effective devices for management of G. swynnertoni as they can be used for both control (insecticide-impregnated cloth) and for sampling (rigid plastic with insect glue or adhesive film) of populations.

Show MeSH

Related in: MedlinePlus

Daily catches of G. swynnertoni and G. pallidipes with different target types.Targets were all blue, or of equal vertical rectangles of blue and black or blue-black-blue material. Devices were covered with adhesive film to compare the propensity of flies to land on the different target types. The limits of the boxes indicate the twenty-fifth and seventy-fifth percentiles; the solid line in the box is the median; the capped bars indicate the tenth and the ninetieth percentiles, and data points outside these limits are plotted as circles.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3584985&req=5

pntd-0002063-g004: Daily catches of G. swynnertoni and G. pallidipes with different target types.Targets were all blue, or of equal vertical rectangles of blue and black or blue-black-blue material. Devices were covered with adhesive film to compare the propensity of flies to land on the different target types. The limits of the boxes indicate the twenty-fifth and seventy-fifth percentiles; the solid line in the box is the median; the capped bars indicate the tenth and the ninetieth percentiles, and data points outside these limits are plotted as circles.

Mentions: Two blue fabrics were tested: C180 Azur 623 phthalogen blue 100% cotton (180 g/m2, TDV, Laval, France) with a reflectance peak at 460 nm as measured with a Datacolor Check Spectrophotometer (Datacolor AG, Dietlikon, Switzerland), referred to hereafter as standard blue cotton, and turquoise blue 65% polyester/35% viscose (234 g/m2, Q10067 Sunflag, Nairobi, Kenya) with a peak at 480 nm. The phthalogen blue paint on the plastic leg panel had a peak of 460 nm. A 100% polyester black (225 g/m2, Q15093 Sunflag, Nairobi) was used for all devices in all trials described here. To monitor the number of tsetse landing on cloth targets and leg panels, one-sided adhesive film (30 cm wide rolls, Rentokil FE45, UK) was stitched with thread to both sides of the trapping devices. However, in 2009 in Tanzania only the lower 60 cm of the targets was covered. Plastic leg panels in Tanzania were coated with a non-setting shiny glue (Temoocid, Kollant, Italy). Transmittance spectra for both adhesives are compared to polybutene in Figure 4.4 in IAEA TECDOC 1373 [26]. All of these adhesives are highly transparent in the visible spectrum, but Rentokil film absorbs significantly in the ultraviolet (<400 nm).


Standardizing visual control devices for tsetse flies: East African species Glossina swynnertoni.

Mramba F, Oloo F, Byamungu M, Kröber T, McMullin A, Mihok S, Guerin PM - PLoS Negl Trop Dis (2013)

Daily catches of G. swynnertoni and G. pallidipes with different target types.Targets were all blue, or of equal vertical rectangles of blue and black or blue-black-blue material. Devices were covered with adhesive film to compare the propensity of flies to land on the different target types. The limits of the boxes indicate the twenty-fifth and seventy-fifth percentiles; the solid line in the box is the median; the capped bars indicate the tenth and the ninetieth percentiles, and data points outside these limits are plotted as circles.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3584985&req=5

pntd-0002063-g004: Daily catches of G. swynnertoni and G. pallidipes with different target types.Targets were all blue, or of equal vertical rectangles of blue and black or blue-black-blue material. Devices were covered with adhesive film to compare the propensity of flies to land on the different target types. The limits of the boxes indicate the twenty-fifth and seventy-fifth percentiles; the solid line in the box is the median; the capped bars indicate the tenth and the ninetieth percentiles, and data points outside these limits are plotted as circles.
Mentions: Two blue fabrics were tested: C180 Azur 623 phthalogen blue 100% cotton (180 g/m2, TDV, Laval, France) with a reflectance peak at 460 nm as measured with a Datacolor Check Spectrophotometer (Datacolor AG, Dietlikon, Switzerland), referred to hereafter as standard blue cotton, and turquoise blue 65% polyester/35% viscose (234 g/m2, Q10067 Sunflag, Nairobi, Kenya) with a peak at 480 nm. The phthalogen blue paint on the plastic leg panel had a peak of 460 nm. A 100% polyester black (225 g/m2, Q15093 Sunflag, Nairobi) was used for all devices in all trials described here. To monitor the number of tsetse landing on cloth targets and leg panels, one-sided adhesive film (30 cm wide rolls, Rentokil FE45, UK) was stitched with thread to both sides of the trapping devices. However, in 2009 in Tanzania only the lower 60 cm of the targets was covered. Plastic leg panels in Tanzania were coated with a non-setting shiny glue (Temoocid, Kollant, Italy). Transmittance spectra for both adhesives are compared to polybutene in Figure 4.4 in IAEA TECDOC 1373 [26]. All of these adhesives are highly transparent in the visible spectrum, but Rentokil film absorbs significantly in the ultraviolet (<400 nm).

Bottom Line: Here we set out to standardize long-lasting, visually-attractive devices for Glossina swynnertoni, a vector of both human and animal trypanosomiasis in open savannah in Tanzania and Kenya, and in neighbouring conservation areas used by pastoralists.Baiting with chemicals did not affect the relative performance of devices.Leg panels and 0.5 m(2) cloth targets show promise as cost effective devices for management of G. swynnertoni as they can be used for both control (insecticide-impregnated cloth) and for sampling (rigid plastic with insect glue or adhesive film) of populations.

View Article: PubMed Central - PubMed

Affiliation: Tsetse and Trypanosomiasis Research Institute, Tanga, Tanzania.

ABSTRACT

Background: Here we set out to standardize long-lasting, visually-attractive devices for Glossina swynnertoni, a vector of both human and animal trypanosomiasis in open savannah in Tanzania and Kenya, and in neighbouring conservation areas used by pastoralists. The goal was to determine the most practical device/material that would induce the strongest landing response in G. swynnertoni for use in area-wide population suppression of this fly with insecticide-impregnated devices.

Methods and findings: Trials were conducted in wet and dry seasons in the Serengeti and Maasai Mara to measure the performance of traps and targets of different sizes and colours, with and without chemical baits, at different population densities and under different environmental conditions. Adhesive film was used as a simple enumerator at these remote locations to compare trapping efficiencies of devices. Independent of season or presence of chemical baits, targets in phthalogen blue or turquoise blue cloth with adhesive film were the best devices for capturing G. swynnertoni in all situations, catching up to 19 times more flies than pyramidal traps. Baiting with chemicals did not affect the relative performance of devices. Fly landings were two times higher on 1 m(2) blue-black targets as on pyramidal traps when equivalent areas of both were covered with adhesive film. Landings on 1 m(2) blue-black targets were compared to those on smaller phthalogen blue 0.5 m(2) all-blue or blue-black-blue cloth targets, and to landings on all-blue plastic 0.32-0.47 m(2) leg panels painted in phthalogen blue. These smaller targets and leg panels captured equivalent numbers of G. swynnertoni per unit area as bigger targets.

Conclusions: Leg panels and 0.5 m(2) cloth targets show promise as cost effective devices for management of G. swynnertoni as they can be used for both control (insecticide-impregnated cloth) and for sampling (rigid plastic with insect glue or adhesive film) of populations.

Show MeSH
Related in: MedlinePlus