Limits...
Standardizing visual control devices for tsetse flies: East African species Glossina swynnertoni.

Mramba F, Oloo F, Byamungu M, Kröber T, McMullin A, Mihok S, Guerin PM - PLoS Negl Trop Dis (2013)

Bottom Line: Here we set out to standardize long-lasting, visually-attractive devices for Glossina swynnertoni, a vector of both human and animal trypanosomiasis in open savannah in Tanzania and Kenya, and in neighbouring conservation areas used by pastoralists.Baiting with chemicals did not affect the relative performance of devices.Leg panels and 0.5 m(2) cloth targets show promise as cost effective devices for management of G. swynnertoni as they can be used for both control (insecticide-impregnated cloth) and for sampling (rigid plastic with insect glue or adhesive film) of populations.

View Article: PubMed Central - PubMed

Affiliation: Tsetse and Trypanosomiasis Research Institute, Tanga, Tanzania.

ABSTRACT

Background: Here we set out to standardize long-lasting, visually-attractive devices for Glossina swynnertoni, a vector of both human and animal trypanosomiasis in open savannah in Tanzania and Kenya, and in neighbouring conservation areas used by pastoralists. The goal was to determine the most practical device/material that would induce the strongest landing response in G. swynnertoni for use in area-wide population suppression of this fly with insecticide-impregnated devices.

Methods and findings: Trials were conducted in wet and dry seasons in the Serengeti and Maasai Mara to measure the performance of traps and targets of different sizes and colours, with and without chemical baits, at different population densities and under different environmental conditions. Adhesive film was used as a simple enumerator at these remote locations to compare trapping efficiencies of devices. Independent of season or presence of chemical baits, targets in phthalogen blue or turquoise blue cloth with adhesive film were the best devices for capturing G. swynnertoni in all situations, catching up to 19 times more flies than pyramidal traps. Baiting with chemicals did not affect the relative performance of devices. Fly landings were two times higher on 1 m(2) blue-black targets as on pyramidal traps when equivalent areas of both were covered with adhesive film. Landings on 1 m(2) blue-black targets were compared to those on smaller phthalogen blue 0.5 m(2) all-blue or blue-black-blue cloth targets, and to landings on all-blue plastic 0.32-0.47 m(2) leg panels painted in phthalogen blue. These smaller targets and leg panels captured equivalent numbers of G. swynnertoni per unit area as bigger targets.

Conclusions: Leg panels and 0.5 m(2) cloth targets show promise as cost effective devices for management of G. swynnertoni as they can be used for both control (insecticide-impregnated cloth) and for sampling (rigid plastic with insect glue or adhesive film) of populations.

Show MeSH

Related in: MedlinePlus

Blue cotton target with adhesive film and adjoining adhesive film target in Serengeti tsetse habitat.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3584985&req=5

pntd-0002063-g001: Blue cotton target with adhesive film and adjoining adhesive film target in Serengeti tsetse habitat.

Mentions: To investigate the efficiency with which 0.5 m2 targets capture tsetse, a fully randomized trial was made in 2012 with three replicates of oblong sticky targets in blue-black-blue and all blue (Table 1) were each flanked with an adjoining transparent adhesive film target of the same shape and size (sticky on only one side; Figure 1). The aim was to estimate what proportion of flies attracted to the targets circle the device.


Standardizing visual control devices for tsetse flies: East African species Glossina swynnertoni.

Mramba F, Oloo F, Byamungu M, Kröber T, McMullin A, Mihok S, Guerin PM - PLoS Negl Trop Dis (2013)

Blue cotton target with adhesive film and adjoining adhesive film target in Serengeti tsetse habitat.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3584985&req=5

pntd-0002063-g001: Blue cotton target with adhesive film and adjoining adhesive film target in Serengeti tsetse habitat.
Mentions: To investigate the efficiency with which 0.5 m2 targets capture tsetse, a fully randomized trial was made in 2012 with three replicates of oblong sticky targets in blue-black-blue and all blue (Table 1) were each flanked with an adjoining transparent adhesive film target of the same shape and size (sticky on only one side; Figure 1). The aim was to estimate what proportion of flies attracted to the targets circle the device.

Bottom Line: Here we set out to standardize long-lasting, visually-attractive devices for Glossina swynnertoni, a vector of both human and animal trypanosomiasis in open savannah in Tanzania and Kenya, and in neighbouring conservation areas used by pastoralists.Baiting with chemicals did not affect the relative performance of devices.Leg panels and 0.5 m(2) cloth targets show promise as cost effective devices for management of G. swynnertoni as they can be used for both control (insecticide-impregnated cloth) and for sampling (rigid plastic with insect glue or adhesive film) of populations.

View Article: PubMed Central - PubMed

Affiliation: Tsetse and Trypanosomiasis Research Institute, Tanga, Tanzania.

ABSTRACT

Background: Here we set out to standardize long-lasting, visually-attractive devices for Glossina swynnertoni, a vector of both human and animal trypanosomiasis in open savannah in Tanzania and Kenya, and in neighbouring conservation areas used by pastoralists. The goal was to determine the most practical device/material that would induce the strongest landing response in G. swynnertoni for use in area-wide population suppression of this fly with insecticide-impregnated devices.

Methods and findings: Trials were conducted in wet and dry seasons in the Serengeti and Maasai Mara to measure the performance of traps and targets of different sizes and colours, with and without chemical baits, at different population densities and under different environmental conditions. Adhesive film was used as a simple enumerator at these remote locations to compare trapping efficiencies of devices. Independent of season or presence of chemical baits, targets in phthalogen blue or turquoise blue cloth with adhesive film were the best devices for capturing G. swynnertoni in all situations, catching up to 19 times more flies than pyramidal traps. Baiting with chemicals did not affect the relative performance of devices. Fly landings were two times higher on 1 m(2) blue-black targets as on pyramidal traps when equivalent areas of both were covered with adhesive film. Landings on 1 m(2) blue-black targets were compared to those on smaller phthalogen blue 0.5 m(2) all-blue or blue-black-blue cloth targets, and to landings on all-blue plastic 0.32-0.47 m(2) leg panels painted in phthalogen blue. These smaller targets and leg panels captured equivalent numbers of G. swynnertoni per unit area as bigger targets.

Conclusions: Leg panels and 0.5 m(2) cloth targets show promise as cost effective devices for management of G. swynnertoni as they can be used for both control (insecticide-impregnated cloth) and for sampling (rigid plastic with insect glue or adhesive film) of populations.

Show MeSH
Related in: MedlinePlus