Limits...
Anticipatory regulation of action control in a simon task: behavioral, electrophysiological, and FMRI correlates.

Strack G, Kaufmann C, Kehrer S, Brandt S, Stürmer B - Front Psychol (2013)

Bottom Line: Cues informed either about the upcoming (1) spatial stimulus-response compatibility (rule cues), or (2) the stimulus location (position cues), or (3) were non-informative.Pre-SMA and ventrolateral prefrontal activation after rule cues correlated with the effective use of rule cues in behavioral performance.Our data point to the importance to disentangle different anticipatory adjustments that might also include the prevention of upcoming conflict via task re-coding.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Humboldt-Universität zu Berlin Berlin, Germany.

ABSTRACT
With the present study we investigated cue-induced preparation in a Simon task and measured electroencephalogram and functional magnetic resonance imaging (fMRI) data in two within-subjects sessions. Cues informed either about the upcoming (1) spatial stimulus-response compatibility (rule cues), or (2) the stimulus location (position cues), or (3) were non-informative. Only rule cues allowed anticipating the upcoming compatibility condition. Position cues allowed anticipation of the upcoming location of the Simon stimulus but not its compatibility condition. Rule cues elicited fastest and most accurate performance for both compatible and incompatible trials. The contingent negative variation (CNV) in the event-related potential (ERP) of the cue-target interval is an index of anticipatory preparation and was magnified after rule cues. The N2 in the post-target ERP as a measure of online action control was reduced in Simon trials after rule cues. Although compatible trials were faster than incompatible trials in all cue conditions only non-informative cues revealed a compatibility effect in additional indicators of Simon task conflict like accuracy and the N2. We thus conclude that rule cues induced anticipatory re-coding of the Simon task that did not involve cognitive conflict anymore. fMRI revealed that rule cues yielded more activation of the left rostral, dorsal, and ventral prefrontal cortex as well as the pre-SMA as compared to POS and NON-cues. Pre-SMA and ventrolateral prefrontal activation after rule cues correlated with the effective use of rule cues in behavioral performance. Position cues induced a smaller CNV effect and exhibited less prefrontal and pre-SMA contributions in fMRI. Our data point to the importance to disentangle different anticipatory adjustments that might also include the prevention of upcoming conflict via task re-coding.

No MeSH data available.


Related in: MedlinePlus

(A) The N2 at the Fz electrode for rule cues (RULE), position cues (POS), and non-informative cues (NON) averaged across compatibility conditions. P2 and N2 peaks as determined by automatic peak detection are highlighted. (B) The P2 and N2 peaks at the Fz electrode for non-informative cues (NON) plotted separately for compatible and incompatible events.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3569607&req=5

Figure 5: (A) The N2 at the Fz electrode for rule cues (RULE), position cues (POS), and non-informative cues (NON) averaged across compatibility conditions. P2 and N2 peaks as determined by automatic peak detection are highlighted. (B) The P2 and N2 peaks at the Fz electrode for non-informative cues (NON) plotted separately for compatible and incompatible events.

Mentions: An ANOVA of N2 at the Fz electrode (Figure 5A) resulted in a main effect of cue condition, F(2,54) = 12.62, p < 0.001. RULE cues reduced the magnitude of the N2 as compared to NON-cues, t(27) = 4.30, p < 0.001, and as compared to POS cues, t(27) = 4.13, p < 0.001. POS cues reduced the N2 amplitude as compared to NON-cues numerically, however, this effect failed significance, t(27) = 1.83, p = 0.08. The main effect of compatibility, F(1,27) = 2.05, p = 0.16, as well as the interaction between compatibility and cue condition were not significant, F(2,54) = 2.29, p = 0.11. In order to test our a priori hypothesis that incompatible trials should provoke a larger N2 amplitude than compatible trials, we ran a t-test. Such a compatibility effect was present in trials with NON-cues, t(27) = 2.98, p < 0.01, while it was absent in trials with both informative cue types, Fs < 1 (see Figure 5B).


Anticipatory regulation of action control in a simon task: behavioral, electrophysiological, and FMRI correlates.

Strack G, Kaufmann C, Kehrer S, Brandt S, Stürmer B - Front Psychol (2013)

(A) The N2 at the Fz electrode for rule cues (RULE), position cues (POS), and non-informative cues (NON) averaged across compatibility conditions. P2 and N2 peaks as determined by automatic peak detection are highlighted. (B) The P2 and N2 peaks at the Fz electrode for non-informative cues (NON) plotted separately for compatible and incompatible events.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3569607&req=5

Figure 5: (A) The N2 at the Fz electrode for rule cues (RULE), position cues (POS), and non-informative cues (NON) averaged across compatibility conditions. P2 and N2 peaks as determined by automatic peak detection are highlighted. (B) The P2 and N2 peaks at the Fz electrode for non-informative cues (NON) plotted separately for compatible and incompatible events.
Mentions: An ANOVA of N2 at the Fz electrode (Figure 5A) resulted in a main effect of cue condition, F(2,54) = 12.62, p < 0.001. RULE cues reduced the magnitude of the N2 as compared to NON-cues, t(27) = 4.30, p < 0.001, and as compared to POS cues, t(27) = 4.13, p < 0.001. POS cues reduced the N2 amplitude as compared to NON-cues numerically, however, this effect failed significance, t(27) = 1.83, p = 0.08. The main effect of compatibility, F(1,27) = 2.05, p = 0.16, as well as the interaction between compatibility and cue condition were not significant, F(2,54) = 2.29, p = 0.11. In order to test our a priori hypothesis that incompatible trials should provoke a larger N2 amplitude than compatible trials, we ran a t-test. Such a compatibility effect was present in trials with NON-cues, t(27) = 2.98, p < 0.01, while it was absent in trials with both informative cue types, Fs < 1 (see Figure 5B).

Bottom Line: Cues informed either about the upcoming (1) spatial stimulus-response compatibility (rule cues), or (2) the stimulus location (position cues), or (3) were non-informative.Pre-SMA and ventrolateral prefrontal activation after rule cues correlated with the effective use of rule cues in behavioral performance.Our data point to the importance to disentangle different anticipatory adjustments that might also include the prevention of upcoming conflict via task re-coding.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Humboldt-Universität zu Berlin Berlin, Germany.

ABSTRACT
With the present study we investigated cue-induced preparation in a Simon task and measured electroencephalogram and functional magnetic resonance imaging (fMRI) data in two within-subjects sessions. Cues informed either about the upcoming (1) spatial stimulus-response compatibility (rule cues), or (2) the stimulus location (position cues), or (3) were non-informative. Only rule cues allowed anticipating the upcoming compatibility condition. Position cues allowed anticipation of the upcoming location of the Simon stimulus but not its compatibility condition. Rule cues elicited fastest and most accurate performance for both compatible and incompatible trials. The contingent negative variation (CNV) in the event-related potential (ERP) of the cue-target interval is an index of anticipatory preparation and was magnified after rule cues. The N2 in the post-target ERP as a measure of online action control was reduced in Simon trials after rule cues. Although compatible trials were faster than incompatible trials in all cue conditions only non-informative cues revealed a compatibility effect in additional indicators of Simon task conflict like accuracy and the N2. We thus conclude that rule cues induced anticipatory re-coding of the Simon task that did not involve cognitive conflict anymore. fMRI revealed that rule cues yielded more activation of the left rostral, dorsal, and ventral prefrontal cortex as well as the pre-SMA as compared to POS and NON-cues. Pre-SMA and ventrolateral prefrontal activation after rule cues correlated with the effective use of rule cues in behavioral performance. Position cues induced a smaller CNV effect and exhibited less prefrontal and pre-SMA contributions in fMRI. Our data point to the importance to disentangle different anticipatory adjustments that might also include the prevention of upcoming conflict via task re-coding.

No MeSH data available.


Related in: MedlinePlus