Limits...
Anticipatory regulation of action control in a simon task: behavioral, electrophysiological, and FMRI correlates.

Strack G, Kaufmann C, Kehrer S, Brandt S, Stürmer B - Front Psychol (2013)

Bottom Line: Cues informed either about the upcoming (1) spatial stimulus-response compatibility (rule cues), or (2) the stimulus location (position cues), or (3) were non-informative.Pre-SMA and ventrolateral prefrontal activation after rule cues correlated with the effective use of rule cues in behavioral performance.Our data point to the importance to disentangle different anticipatory adjustments that might also include the prevention of upcoming conflict via task re-coding.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Humboldt-Universität zu Berlin Berlin, Germany.

ABSTRACT
With the present study we investigated cue-induced preparation in a Simon task and measured electroencephalogram and functional magnetic resonance imaging (fMRI) data in two within-subjects sessions. Cues informed either about the upcoming (1) spatial stimulus-response compatibility (rule cues), or (2) the stimulus location (position cues), or (3) were non-informative. Only rule cues allowed anticipating the upcoming compatibility condition. Position cues allowed anticipation of the upcoming location of the Simon stimulus but not its compatibility condition. Rule cues elicited fastest and most accurate performance for both compatible and incompatible trials. The contingent negative variation (CNV) in the event-related potential (ERP) of the cue-target interval is an index of anticipatory preparation and was magnified after rule cues. The N2 in the post-target ERP as a measure of online action control was reduced in Simon trials after rule cues. Although compatible trials were faster than incompatible trials in all cue conditions only non-informative cues revealed a compatibility effect in additional indicators of Simon task conflict like accuracy and the N2. We thus conclude that rule cues induced anticipatory re-coding of the Simon task that did not involve cognitive conflict anymore. fMRI revealed that rule cues yielded more activation of the left rostral, dorsal, and ventral prefrontal cortex as well as the pre-SMA as compared to POS and NON-cues. Pre-SMA and ventrolateral prefrontal activation after rule cues correlated with the effective use of rule cues in behavioral performance. Position cues induced a smaller CNV effect and exhibited less prefrontal and pre-SMA contributions in fMRI. Our data point to the importance to disentangle different anticipatory adjustments that might also include the prevention of upcoming conflict via task re-coding.

No MeSH data available.


Related in: MedlinePlus

Rule cues predicted compatibility and were for this reason expected to trigger anticipatory action control. These cues reduced the task set from four to two possible S-R assignments and were presented along two different control conditions: position cues that predicted the upcoming stimulus position and reduced the task set in the same amount enabled an attentional shift to the task-relevant visual half. Non-informative cues did not induce any anticipatory processes and lead not to a task set reduction. Trial procedure as well as timing was kept identical in the EEG and fMRI session.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3569607&req=5

Figure 1: Rule cues predicted compatibility and were for this reason expected to trigger anticipatory action control. These cues reduced the task set from four to two possible S-R assignments and were presented along two different control conditions: position cues that predicted the upcoming stimulus position and reduced the task set in the same amount enabled an attentional shift to the task-relevant visual half. Non-informative cues did not induce any anticipatory processes and lead not to a task set reduction. Trial procedure as well as timing was kept identical in the EEG and fMRI session.

Mentions: The trial procedure was identical in both sessions (Figure 1). Each trial consisted of a cue period (1 s), a delay period (5 s), a stimulus period (0.2 s), and a fixed time interval for the response (1.8 s, whereas responses later than 1 s were classified as too late). Stimulation was presented white on a dark gray background on a flat computer screen in the EEG chamber and via a back-projection screen in the MRI scanner. A white fixation dot (0.09° visual angle) marked the center of the screen as long as no cue stimulus was displayed.


Anticipatory regulation of action control in a simon task: behavioral, electrophysiological, and FMRI correlates.

Strack G, Kaufmann C, Kehrer S, Brandt S, Stürmer B - Front Psychol (2013)

Rule cues predicted compatibility and were for this reason expected to trigger anticipatory action control. These cues reduced the task set from four to two possible S-R assignments and were presented along two different control conditions: position cues that predicted the upcoming stimulus position and reduced the task set in the same amount enabled an attentional shift to the task-relevant visual half. Non-informative cues did not induce any anticipatory processes and lead not to a task set reduction. Trial procedure as well as timing was kept identical in the EEG and fMRI session.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3569607&req=5

Figure 1: Rule cues predicted compatibility and were for this reason expected to trigger anticipatory action control. These cues reduced the task set from four to two possible S-R assignments and were presented along two different control conditions: position cues that predicted the upcoming stimulus position and reduced the task set in the same amount enabled an attentional shift to the task-relevant visual half. Non-informative cues did not induce any anticipatory processes and lead not to a task set reduction. Trial procedure as well as timing was kept identical in the EEG and fMRI session.
Mentions: The trial procedure was identical in both sessions (Figure 1). Each trial consisted of a cue period (1 s), a delay period (5 s), a stimulus period (0.2 s), and a fixed time interval for the response (1.8 s, whereas responses later than 1 s were classified as too late). Stimulation was presented white on a dark gray background on a flat computer screen in the EEG chamber and via a back-projection screen in the MRI scanner. A white fixation dot (0.09° visual angle) marked the center of the screen as long as no cue stimulus was displayed.

Bottom Line: Cues informed either about the upcoming (1) spatial stimulus-response compatibility (rule cues), or (2) the stimulus location (position cues), or (3) were non-informative.Pre-SMA and ventrolateral prefrontal activation after rule cues correlated with the effective use of rule cues in behavioral performance.Our data point to the importance to disentangle different anticipatory adjustments that might also include the prevention of upcoming conflict via task re-coding.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Humboldt-Universität zu Berlin Berlin, Germany.

ABSTRACT
With the present study we investigated cue-induced preparation in a Simon task and measured electroencephalogram and functional magnetic resonance imaging (fMRI) data in two within-subjects sessions. Cues informed either about the upcoming (1) spatial stimulus-response compatibility (rule cues), or (2) the stimulus location (position cues), or (3) were non-informative. Only rule cues allowed anticipating the upcoming compatibility condition. Position cues allowed anticipation of the upcoming location of the Simon stimulus but not its compatibility condition. Rule cues elicited fastest and most accurate performance for both compatible and incompatible trials. The contingent negative variation (CNV) in the event-related potential (ERP) of the cue-target interval is an index of anticipatory preparation and was magnified after rule cues. The N2 in the post-target ERP as a measure of online action control was reduced in Simon trials after rule cues. Although compatible trials were faster than incompatible trials in all cue conditions only non-informative cues revealed a compatibility effect in additional indicators of Simon task conflict like accuracy and the N2. We thus conclude that rule cues induced anticipatory re-coding of the Simon task that did not involve cognitive conflict anymore. fMRI revealed that rule cues yielded more activation of the left rostral, dorsal, and ventral prefrontal cortex as well as the pre-SMA as compared to POS and NON-cues. Pre-SMA and ventrolateral prefrontal activation after rule cues correlated with the effective use of rule cues in behavioral performance. Position cues induced a smaller CNV effect and exhibited less prefrontal and pre-SMA contributions in fMRI. Our data point to the importance to disentangle different anticipatory adjustments that might also include the prevention of upcoming conflict via task re-coding.

No MeSH data available.


Related in: MedlinePlus