Limits...
Lack of the matricellular protein SPARC (secreted protein, acidic and rich in cysteine) attenuates liver fibrogenesis in mice.

Atorrasagasti C, Peixoto E, Aquino JB, Kippes N, Malvicini M, Alaniz L, Garcia M, Piccioni F, Fiore EJ, Bayo J, Bataller R, Guruceaga E, Corrales F, Podhajcer O, Mazzolini G - PLoS ONE (2013)

Bottom Line: Consistently, collagen deposits and mRNA expression levels were decreased in SPARC(-/-) mice when compared to SPARC(+/+) mice; in addition, MMP-2 expression was increased in SPARC(-/-) mice.A reduction in the number of activated myofibroblasts was observed.Overall our data suggest that SPARC plays a significant role in liver fibrogenesis.

View Article: PubMed Central - PubMed

Affiliation: Gene Therapy Laboratory, School of Medicine, Austral University, Derqui-Pilar, Buenos Aires, Argentina.

ABSTRACT

Introduction: Secreted Protein, Acidic and Rich in Cysteine (SPARC) is a matricellular protein involved in many biological processes and found over-expressed in cirrhotic livers. By mean of a genetic approach we herein provide evidence from different in vivo liver disease models suggesting a profibrogenic role for SPARC.

Methods: Two in vivo models of liver fibrosis, based on TAA administration and bile duct ligation, were developed on SPARC wild-type (SPARC(+/+)) and knock-out (SPARC(-/-)) mice. Hepatic SPARC expression was analyzed by qPCR. Fibrosis was assessed by Sirius Red staining, and the maturation state of collagen fibers was analyzed using polarized light. Necroinflammatory activity was evaluated by applying the Knodell score and liver inflammatory infiltration was characterized by immunohistochemistry. Hepatic stellate cell activation was assessed by α-SMA immunohistochemistry. In addition, pro-fibrogenic genes and inflammatory cytokines were measured by qPCR and/or ELISA. Liver gene expression profile was analyzed in SPARC(-/-) and SPARC(+/+) mice using Affymetrix Mouse Gene ST 1.0 array.

Results: SPARC expression was found induced in fibrotic livers of mouse and human. SPARC(-/-) mice showed a reduction in the degree of inflammation, mainly CD4+ cells, and fibrosis. Consistently, collagen deposits and mRNA expression levels were decreased in SPARC(-/-) mice when compared to SPARC(+/+) mice; in addition, MMP-2 expression was increased in SPARC(-/-) mice. A reduction in the number of activated myofibroblasts was observed. Moreover, TGF-β1 expression levels were down-regulated in the liver as well as in the serum of TAA-treated knock-out animals. Ingenuity Pathway Analysis (IPA) analysis suggested several gene networks which might involve protective mechanisms of SPARC deficiency against liver fibrogenesis and a better established machinery to repair DNA and detoxify from external chemical stimuli.

Conclusions: Overall our data suggest that SPARC plays a significant role in liver fibrogenesis. Interventions to inhibit SPARC expression are suggested as promising approaches for liver fibrosis treatment.

Show MeSH

Related in: MedlinePlus

The top network of differentially expressed genes.The networks are presented as graphical displays where genes appear as nodes and the molecular relationships are represented by lines. Up-regulated and down-regulated genes in SPARC−/− mice are shown as red spot or green spot, respectively. The top network of differentially expressed genes in SPARC−/− versus SPARC+/+ mice (A) or SPARC−/− after 10 weeks of TAA treatment versus SPARC+/+ TAA treated mice (B), as identified by IPA analysis. Intensity of the red or green color shows the level of gene expression. Gray represents a gene found which is related to the others but did not meet the cutoff criteria. A Activation, E Expression (includes metabolism/synthesis for chemicals), I Inhibition, L Proteolysis (includes degradation for Chemicals), LO Localization, M Biochemical Modification, MB Group/complex Membership, P Phosphorylation/Dephosphorylation, PD Protein-DNA binding, PP Protein-Protein binding, RB Regulation of Binding,T Transcription,TR Translocation.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3569438&req=5

pone-0054962-g008: The top network of differentially expressed genes.The networks are presented as graphical displays where genes appear as nodes and the molecular relationships are represented by lines. Up-regulated and down-regulated genes in SPARC−/− mice are shown as red spot or green spot, respectively. The top network of differentially expressed genes in SPARC−/− versus SPARC+/+ mice (A) or SPARC−/− after 10 weeks of TAA treatment versus SPARC+/+ TAA treated mice (B), as identified by IPA analysis. Intensity of the red or green color shows the level of gene expression. Gray represents a gene found which is related to the others but did not meet the cutoff criteria. A Activation, E Expression (includes metabolism/synthesis for chemicals), I Inhibition, L Proteolysis (includes degradation for Chemicals), LO Localization, M Biochemical Modification, MB Group/complex Membership, P Phosphorylation/Dephosphorylation, PD Protein-DNA binding, PP Protein-Protein binding, RB Regulation of Binding,T Transcription,TR Translocation.

Mentions: A total of 139 upregulated genes (124 known genes and 15 un-known cDNAs or ESTs) and 155 downregulated genes (138 known genes and 17 unknown cDNAs or ESTs) were obtained (Table S1). To analyze microarray data, three strategies were followed. Lists of the 10 top upregulated or downregulated gene lists (Table 2) and gene-interactions networks were performed (Ingenuity) (Figure 8), and modified genes were classified in ontological categories (GO, gene ontology) (Table S2). The analyses of the top up- or down- regulated showed relevant candidate genes in SPARC−/− mice compared to SPARC+/+ mice. It is worth to noting that LOXL4, an important protein involved in the regulation of extracellular matrix components [26], was found increased while USP2, previously involved in triggering hepatocyte apoptosis and CCL19, related with inflammation and fibrogenesis [27], [28], were down-regulated in SPARC−/− untreated liver tissues when compared to SPARC+/+ mice, likely suggesting an initial condition of liver cells which would make them less susceptible to death and compatible with a subsequent reduction in fibrosis development.


Lack of the matricellular protein SPARC (secreted protein, acidic and rich in cysteine) attenuates liver fibrogenesis in mice.

Atorrasagasti C, Peixoto E, Aquino JB, Kippes N, Malvicini M, Alaniz L, Garcia M, Piccioni F, Fiore EJ, Bayo J, Bataller R, Guruceaga E, Corrales F, Podhajcer O, Mazzolini G - PLoS ONE (2013)

The top network of differentially expressed genes.The networks are presented as graphical displays where genes appear as nodes and the molecular relationships are represented by lines. Up-regulated and down-regulated genes in SPARC−/− mice are shown as red spot or green spot, respectively. The top network of differentially expressed genes in SPARC−/− versus SPARC+/+ mice (A) or SPARC−/− after 10 weeks of TAA treatment versus SPARC+/+ TAA treated mice (B), as identified by IPA analysis. Intensity of the red or green color shows the level of gene expression. Gray represents a gene found which is related to the others but did not meet the cutoff criteria. A Activation, E Expression (includes metabolism/synthesis for chemicals), I Inhibition, L Proteolysis (includes degradation for Chemicals), LO Localization, M Biochemical Modification, MB Group/complex Membership, P Phosphorylation/Dephosphorylation, PD Protein-DNA binding, PP Protein-Protein binding, RB Regulation of Binding,T Transcription,TR Translocation.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3569438&req=5

pone-0054962-g008: The top network of differentially expressed genes.The networks are presented as graphical displays where genes appear as nodes and the molecular relationships are represented by lines. Up-regulated and down-regulated genes in SPARC−/− mice are shown as red spot or green spot, respectively. The top network of differentially expressed genes in SPARC−/− versus SPARC+/+ mice (A) or SPARC−/− after 10 weeks of TAA treatment versus SPARC+/+ TAA treated mice (B), as identified by IPA analysis. Intensity of the red or green color shows the level of gene expression. Gray represents a gene found which is related to the others but did not meet the cutoff criteria. A Activation, E Expression (includes metabolism/synthesis for chemicals), I Inhibition, L Proteolysis (includes degradation for Chemicals), LO Localization, M Biochemical Modification, MB Group/complex Membership, P Phosphorylation/Dephosphorylation, PD Protein-DNA binding, PP Protein-Protein binding, RB Regulation of Binding,T Transcription,TR Translocation.
Mentions: A total of 139 upregulated genes (124 known genes and 15 un-known cDNAs or ESTs) and 155 downregulated genes (138 known genes and 17 unknown cDNAs or ESTs) were obtained (Table S1). To analyze microarray data, three strategies were followed. Lists of the 10 top upregulated or downregulated gene lists (Table 2) and gene-interactions networks were performed (Ingenuity) (Figure 8), and modified genes were classified in ontological categories (GO, gene ontology) (Table S2). The analyses of the top up- or down- regulated showed relevant candidate genes in SPARC−/− mice compared to SPARC+/+ mice. It is worth to noting that LOXL4, an important protein involved in the regulation of extracellular matrix components [26], was found increased while USP2, previously involved in triggering hepatocyte apoptosis and CCL19, related with inflammation and fibrogenesis [27], [28], were down-regulated in SPARC−/− untreated liver tissues when compared to SPARC+/+ mice, likely suggesting an initial condition of liver cells which would make them less susceptible to death and compatible with a subsequent reduction in fibrosis development.

Bottom Line: Consistently, collagen deposits and mRNA expression levels were decreased in SPARC(-/-) mice when compared to SPARC(+/+) mice; in addition, MMP-2 expression was increased in SPARC(-/-) mice.A reduction in the number of activated myofibroblasts was observed.Overall our data suggest that SPARC plays a significant role in liver fibrogenesis.

View Article: PubMed Central - PubMed

Affiliation: Gene Therapy Laboratory, School of Medicine, Austral University, Derqui-Pilar, Buenos Aires, Argentina.

ABSTRACT

Introduction: Secreted Protein, Acidic and Rich in Cysteine (SPARC) is a matricellular protein involved in many biological processes and found over-expressed in cirrhotic livers. By mean of a genetic approach we herein provide evidence from different in vivo liver disease models suggesting a profibrogenic role for SPARC.

Methods: Two in vivo models of liver fibrosis, based on TAA administration and bile duct ligation, were developed on SPARC wild-type (SPARC(+/+)) and knock-out (SPARC(-/-)) mice. Hepatic SPARC expression was analyzed by qPCR. Fibrosis was assessed by Sirius Red staining, and the maturation state of collagen fibers was analyzed using polarized light. Necroinflammatory activity was evaluated by applying the Knodell score and liver inflammatory infiltration was characterized by immunohistochemistry. Hepatic stellate cell activation was assessed by α-SMA immunohistochemistry. In addition, pro-fibrogenic genes and inflammatory cytokines were measured by qPCR and/or ELISA. Liver gene expression profile was analyzed in SPARC(-/-) and SPARC(+/+) mice using Affymetrix Mouse Gene ST 1.0 array.

Results: SPARC expression was found induced in fibrotic livers of mouse and human. SPARC(-/-) mice showed a reduction in the degree of inflammation, mainly CD4+ cells, and fibrosis. Consistently, collagen deposits and mRNA expression levels were decreased in SPARC(-/-) mice when compared to SPARC(+/+) mice; in addition, MMP-2 expression was increased in SPARC(-/-) mice. A reduction in the number of activated myofibroblasts was observed. Moreover, TGF-β1 expression levels were down-regulated in the liver as well as in the serum of TAA-treated knock-out animals. Ingenuity Pathway Analysis (IPA) analysis suggested several gene networks which might involve protective mechanisms of SPARC deficiency against liver fibrogenesis and a better established machinery to repair DNA and detoxify from external chemical stimuli.

Conclusions: Overall our data suggest that SPARC plays a significant role in liver fibrogenesis. Interventions to inhibit SPARC expression are suggested as promising approaches for liver fibrosis treatment.

Show MeSH
Related in: MedlinePlus