Limits...
Complete genome sequence of Corynebacterium pseudotuberculosis biovar ovis strain P54B96 isolated from antelope in South Africa obtained by rapid next generation sequencing technology.

Hassan SS, Guimarães LC, Pereira Ude P, Islam A, Ali A, Bakhtiar SM, Ribeiro D, Rodrigues Dos Santos A, Soares Sde C, Dorella F, Pinto AC, Schneider MP, Barbosa MS, Almeida S, Abreu V, Aburjaile F, Carneiro AR, Cerdeira LT, Fiaux K, Barbosa E, Diniz C, Rocha FS, Ramos RT, Jain N, Tiwari S, Barh D, Miyoshi A, Müller B, Silva A, Azevedo V - Stand Genomic Sci (2012)

Bottom Line: This strain is interesting in the sense that it has been found together with non-tuberculous mycobacteria (NTMs) which could nevertheless play a role in the lesion formation.In this work, we describe a set of features of C. pseudotuberculosis P54B96, together with the details of the complete genome sequence and annotation.The genome comprises of 2.34 Mbp long, single circular genome with 2,084 protein-coding genes, 12 rRNA, 49 tRNA and 62 pseudogenes and a G+C content of 52.19%.

View Article: PubMed Central - PubMed

Affiliation: Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

ABSTRACT
The Actinobacteria, Corynebacterium pseudotuberculosis strain P54B96, a nonmotile, non-sporulating and a mesophile bacterium, was isolated from liver, lung and mediastinal lymph node lesions in an antelope from South Africa. This strain is interesting in the sense that it has been found together with non-tuberculous mycobacteria (NTMs) which could nevertheless play a role in the lesion formation. In this work, we describe a set of features of C. pseudotuberculosis P54B96, together with the details of the complete genome sequence and annotation. The genome comprises of 2.34 Mbp long, single circular genome with 2,084 protein-coding genes, 12 rRNA, 49 tRNA and 62 pseudogenes and a G+C content of 52.19%. The analysis of the genome sequence provides means to better understanding the molecular and genetic basis of virulence of this bacterium, enabling a detailed investigation of its pathogenesis.

No MeSH data available.


Related in: MedlinePlus

Phylogenetic tree of C. pseudotuberculosis strain P54B96 representing its position relative to type strains in Corynebacteriaceae along with some other type strains of CMNR group. The tree was inferred from 3,537 aligned characters of the rpoB gene sequence using maximum likelihood method and then checked for its agreement with the current classification Table 1. The branch lengths represent the expected number of substitutions per site. Numbers adjacent to the branches are support values from 1,000 bootstrap replicates, indicated when Larger than 60%. Calculations to determine the phylogenetic distances were done by the software MEGA v5 [30].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3569390&req=5

f1: Phylogenetic tree of C. pseudotuberculosis strain P54B96 representing its position relative to type strains in Corynebacteriaceae along with some other type strains of CMNR group. The tree was inferred from 3,537 aligned characters of the rpoB gene sequence using maximum likelihood method and then checked for its agreement with the current classification Table 1. The branch lengths represent the expected number of substitutions per site. Numbers adjacent to the branches are support values from 1,000 bootstrap replicates, indicated when Larger than 60%. Calculations to determine the phylogenetic distances were done by the software MEGA v5 [30].

Mentions: Figure 1 shows the phylogenetic neighborhood of C. pseudotuberculosis strain P54B96 in an rpoB gene (β subunit of RNA polymerase) based tree. It has recently been shown that phylogenetic analysis for the identification of Corynebacterium as well as other CMNR species based on rpoB gene sequences are more accurate than analyses based on 16S rRNA [42,43]. The rpoB gene sequences of reference strains from the CMNR group were used to construct the phylogenetic tree.


Complete genome sequence of Corynebacterium pseudotuberculosis biovar ovis strain P54B96 isolated from antelope in South Africa obtained by rapid next generation sequencing technology.

Hassan SS, Guimarães LC, Pereira Ude P, Islam A, Ali A, Bakhtiar SM, Ribeiro D, Rodrigues Dos Santos A, Soares Sde C, Dorella F, Pinto AC, Schneider MP, Barbosa MS, Almeida S, Abreu V, Aburjaile F, Carneiro AR, Cerdeira LT, Fiaux K, Barbosa E, Diniz C, Rocha FS, Ramos RT, Jain N, Tiwari S, Barh D, Miyoshi A, Müller B, Silva A, Azevedo V - Stand Genomic Sci (2012)

Phylogenetic tree of C. pseudotuberculosis strain P54B96 representing its position relative to type strains in Corynebacteriaceae along with some other type strains of CMNR group. The tree was inferred from 3,537 aligned characters of the rpoB gene sequence using maximum likelihood method and then checked for its agreement with the current classification Table 1. The branch lengths represent the expected number of substitutions per site. Numbers adjacent to the branches are support values from 1,000 bootstrap replicates, indicated when Larger than 60%. Calculations to determine the phylogenetic distances were done by the software MEGA v5 [30].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3569390&req=5

f1: Phylogenetic tree of C. pseudotuberculosis strain P54B96 representing its position relative to type strains in Corynebacteriaceae along with some other type strains of CMNR group. The tree was inferred from 3,537 aligned characters of the rpoB gene sequence using maximum likelihood method and then checked for its agreement with the current classification Table 1. The branch lengths represent the expected number of substitutions per site. Numbers adjacent to the branches are support values from 1,000 bootstrap replicates, indicated when Larger than 60%. Calculations to determine the phylogenetic distances were done by the software MEGA v5 [30].
Mentions: Figure 1 shows the phylogenetic neighborhood of C. pseudotuberculosis strain P54B96 in an rpoB gene (β subunit of RNA polymerase) based tree. It has recently been shown that phylogenetic analysis for the identification of Corynebacterium as well as other CMNR species based on rpoB gene sequences are more accurate than analyses based on 16S rRNA [42,43]. The rpoB gene sequences of reference strains from the CMNR group were used to construct the phylogenetic tree.

Bottom Line: This strain is interesting in the sense that it has been found together with non-tuberculous mycobacteria (NTMs) which could nevertheless play a role in the lesion formation.In this work, we describe a set of features of C. pseudotuberculosis P54B96, together with the details of the complete genome sequence and annotation.The genome comprises of 2.34 Mbp long, single circular genome with 2,084 protein-coding genes, 12 rRNA, 49 tRNA and 62 pseudogenes and a G+C content of 52.19%.

View Article: PubMed Central - PubMed

Affiliation: Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

ABSTRACT
The Actinobacteria, Corynebacterium pseudotuberculosis strain P54B96, a nonmotile, non-sporulating and a mesophile bacterium, was isolated from liver, lung and mediastinal lymph node lesions in an antelope from South Africa. This strain is interesting in the sense that it has been found together with non-tuberculous mycobacteria (NTMs) which could nevertheless play a role in the lesion formation. In this work, we describe a set of features of C. pseudotuberculosis P54B96, together with the details of the complete genome sequence and annotation. The genome comprises of 2.34 Mbp long, single circular genome with 2,084 protein-coding genes, 12 rRNA, 49 tRNA and 62 pseudogenes and a G+C content of 52.19%. The analysis of the genome sequence provides means to better understanding the molecular and genetic basis of virulence of this bacterium, enabling a detailed investigation of its pathogenesis.

No MeSH data available.


Related in: MedlinePlus