Limits...
Uneven magnitude of disparities in cancer risks from air toxics.

James W, Jia C, Kedia S - Int J Environ Res Public Health (2012)

Bottom Line: Contributions from emission sources to disparities varied by compound.Spatial QR analyses showed that magnitude of disparity became larger at the high end of exposure range, indicating worsened disparity in the poorest and most highly concentrated black areas.Risk reduction strategies should target emission sources, risk driver chemicals, and especially the disadvantaged neighborhoods.

View Article: PubMed Central - PubMed

Affiliation: Department of Sociology, University of Memphis, TN 38152, USA. wljames1@memphis.edu

ABSTRACT
This study examines race- and income-based disparities in cancer risks from air toxics in Cancer Alley, LA, USA. Risk estimates were obtained from the 2005 National Air Toxics Assessment and socioeconomic and race data from the 2005 American Community Survey, both at the census tract level. Disparities were assessed using spatially weighted ordinary least squares (OLS) regression and quantile regression (QR) for five major air toxics, each with cancer risk greater than 10(-6). Spatial OLS results showed that disparities in cancer risks were significant: People in low-income tracts bore a cumulative risk 12% more than those in high-income tracts (p < 0.05), and those in black-dominant areas 16% more than in white-dominant areas (p < 0.01). Formaldehyde and benzene were the two largest contributors to the disparities. Contributions from emission sources to disparities varied by compound. Spatial QR analyses showed that magnitude of disparity became larger at the high end of exposure range, indicating worsened disparity in the poorest and most highly concentrated black areas. Cancer risk of air toxics not only disproportionately affects socioeconomically disadvantaged and racial minority communities, but there is a gradient effect within these groups with poorer and higher minority concentrated segments being more affected than their counterparts. Risk reduction strategies should target emission sources, risk driver chemicals, and especially the disadvantaged neighborhoods.

Show MeSH

Related in: MedlinePlus

Louisiana and Cancer Alley Tracts.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3546767&req=5

ijerph-09-04365-f007: Louisiana and Cancer Alley Tracts.

Mentions: As the name suggests, “Cancer Alley” serves as a natural test bed for examining disparities in cancer risks from air toxics, not only because of the preponderance of petrochemical industries in this region, but also for its socioeconomic and racial diversity. Cancer Alley stretches approximately 100 miles from Baton Rouge to New Orleans in southeastern Louisiana (Figure A1, see Appendix). The region accounts for approximately 25% of the nation’s petrochemical production, consisting of over 130 plants, refineries, landfills, and factories [16]. Socioeconomic status (SES) data in Cancer Alley reflects low levels of income and high levels of poverty and illiteracy [17]. The racial makeup of Cancer Alley is 55% white and 40% black, compared to state averages of 64% and 32%, and national averages of 75% and 12%, respectively [18]. A total of 79 census tracts in Jefferson, St. John the Baptist, East Baton Rouge, and Orleans Parishes are comprised of at least 90% black residents, and most of these tracts also report exceptionally low household incomes [18]. For the past few decades it is debated whether residents of Cancer Alley experience higher than average rates of morbidity compared to the rest of Louisiana or the nation. Cancer death rates in Cancer Alley are found to be consistent with the average rate for Louisiana [19]. Residents living adjacent to petrochemical plants fail to report any substantial mortality differentials [20,21], meaning that residents at presumably the greatest risk do not report worse outcomes.


Uneven magnitude of disparities in cancer risks from air toxics.

James W, Jia C, Kedia S - Int J Environ Res Public Health (2012)

Louisiana and Cancer Alley Tracts.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3546767&req=5

ijerph-09-04365-f007: Louisiana and Cancer Alley Tracts.
Mentions: As the name suggests, “Cancer Alley” serves as a natural test bed for examining disparities in cancer risks from air toxics, not only because of the preponderance of petrochemical industries in this region, but also for its socioeconomic and racial diversity. Cancer Alley stretches approximately 100 miles from Baton Rouge to New Orleans in southeastern Louisiana (Figure A1, see Appendix). The region accounts for approximately 25% of the nation’s petrochemical production, consisting of over 130 plants, refineries, landfills, and factories [16]. Socioeconomic status (SES) data in Cancer Alley reflects low levels of income and high levels of poverty and illiteracy [17]. The racial makeup of Cancer Alley is 55% white and 40% black, compared to state averages of 64% and 32%, and national averages of 75% and 12%, respectively [18]. A total of 79 census tracts in Jefferson, St. John the Baptist, East Baton Rouge, and Orleans Parishes are comprised of at least 90% black residents, and most of these tracts also report exceptionally low household incomes [18]. For the past few decades it is debated whether residents of Cancer Alley experience higher than average rates of morbidity compared to the rest of Louisiana or the nation. Cancer death rates in Cancer Alley are found to be consistent with the average rate for Louisiana [19]. Residents living adjacent to petrochemical plants fail to report any substantial mortality differentials [20,21], meaning that residents at presumably the greatest risk do not report worse outcomes.

Bottom Line: Contributions from emission sources to disparities varied by compound.Spatial QR analyses showed that magnitude of disparity became larger at the high end of exposure range, indicating worsened disparity in the poorest and most highly concentrated black areas.Risk reduction strategies should target emission sources, risk driver chemicals, and especially the disadvantaged neighborhoods.

View Article: PubMed Central - PubMed

Affiliation: Department of Sociology, University of Memphis, TN 38152, USA. wljames1@memphis.edu

ABSTRACT
This study examines race- and income-based disparities in cancer risks from air toxics in Cancer Alley, LA, USA. Risk estimates were obtained from the 2005 National Air Toxics Assessment and socioeconomic and race data from the 2005 American Community Survey, both at the census tract level. Disparities were assessed using spatially weighted ordinary least squares (OLS) regression and quantile regression (QR) for five major air toxics, each with cancer risk greater than 10(-6). Spatial OLS results showed that disparities in cancer risks were significant: People in low-income tracts bore a cumulative risk 12% more than those in high-income tracts (p < 0.05), and those in black-dominant areas 16% more than in white-dominant areas (p < 0.01). Formaldehyde and benzene were the two largest contributors to the disparities. Contributions from emission sources to disparities varied by compound. Spatial QR analyses showed that magnitude of disparity became larger at the high end of exposure range, indicating worsened disparity in the poorest and most highly concentrated black areas. Cancer risk of air toxics not only disproportionately affects socioeconomically disadvantaged and racial minority communities, but there is a gradient effect within these groups with poorer and higher minority concentrated segments being more affected than their counterparts. Risk reduction strategies should target emission sources, risk driver chemicals, and especially the disadvantaged neighborhoods.

Show MeSH
Related in: MedlinePlus