Limits...
Epithelial-mesenchymal transition markers and HER3 expression are predictors of elisidepsin treatment response in breast and pancreatic cancer cell lines.

Teixidó C, Marés R, Aracil M, Ramón y Cajal S, Hernández-Losa J - PLoS ONE (2013)

Bottom Line: Interestingly, we observed that the basal protein expression levels of EMT markers show a significant correlation with cell viability in response to elisidepsin treatment in a panel of 12 different breast and pancreatic cancer cell lines.In addition, we generated three elisidepsin treatment-resistant cell lines (MCF-7, HPAC and AsPC-1) and analyzed the pattern of expression of different EMT markers in these cells, confirming that acquired resistance to elisidepsin is associated with a switch to the EMT state.These results show that HER3 expression is an important marker of sensitivity to elisidepsin treatment.

View Article: PubMed Central - PubMed

Affiliation: Molecular Pathology Group, Vall d'Hebron Research Institute, Universidad Autonoma of Barcelona, Barcelona, Spain.

ABSTRACT
Elisidepsin (elisidepsin trifluoroacetate, Irvalec®, PM02734) is a new synthetic depsipeptide, a result of the PharmaMar Development Program that seeks synthetic products of marine origin-derived compounds. Elisidepsin is a drug with antiproliferative activity in a wide range of tumors. In the present work we studied and characterized the mechanisms associated with sensitivity and resistance to elisidepsin treatment in a broad panel of tumor cell lines from breast and pancreas carcinomas, focusing on different factors involved in epithelial-mesenchymal transition (EMT) and the use of HER family receptors in predicting the in vitro drug response. Interestingly, we observed that the basal protein expression levels of EMT markers show a significant correlation with cell viability in response to elisidepsin treatment in a panel of 12 different breast and pancreatic cancer cell lines. In addition, we generated three elisidepsin treatment-resistant cell lines (MCF-7, HPAC and AsPC-1) and analyzed the pattern of expression of different EMT markers in these cells, confirming that acquired resistance to elisidepsin is associated with a switch to the EMT state. Furthermore, a direct correlation between basal HER3 expression and sensitivity to elisidepsin was observed; moreover, modulation of HER3 expression levels in different cancer cell lines alter their sensitivities to the drug, making them more resistant when HER3 expression is downregulated by a HER3-specific short hairpin RNA and more sensitive when the receptor is overexpressed. These results show that HER3 expression is an important marker of sensitivity to elisidepsin treatment.

Show MeSH

Related in: MedlinePlus

Acquired resistance to elisidepsin induces an EMT phenotype.A) Cells were lysed, proteins were extracted and western blots were performed with equal amounts of cell lysate (50 µg protein). Expression of epithelial (E-cadherin, β-catenin, γ-catenin)- and mesenchymal (vimentin, Slug, Snail, Twist)-associated proteins differentiates between elisidepsin-sensitive and elisidepsin-resistant cell lines. β-actin was used as an internal control. These western blots were performed in triplicate. B) Expression levels of HER1, HER2, HER3, HER4, pAkt, and pMAPK were analyzed by western blot using 50 µg of protein cell lysate. The membranes were stripped and reprobed with anti-β-actin to verify equal protein loading. C, control; R, resistance.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3539985&req=5

pone-0053645-g005: Acquired resistance to elisidepsin induces an EMT phenotype.A) Cells were lysed, proteins were extracted and western blots were performed with equal amounts of cell lysate (50 µg protein). Expression of epithelial (E-cadherin, β-catenin, γ-catenin)- and mesenchymal (vimentin, Slug, Snail, Twist)-associated proteins differentiates between elisidepsin-sensitive and elisidepsin-resistant cell lines. β-actin was used as an internal control. These western blots were performed in triplicate. B) Expression levels of HER1, HER2, HER3, HER4, pAkt, and pMAPK were analyzed by western blot using 50 µg of protein cell lysate. The membranes were stripped and reprobed with anti-β-actin to verify equal protein loading. C, control; R, resistance.

Mentions: We then performed western blot analysis of the cancer cell lines with acquired resistance and compared them to the corresponding parental control cells. We identified that the three different cancer cell types with acquired resistance to elisidepsin had altered basal levels of EMT markers (Fig. 5A). All resistant cell lines showed decreased E-cadherin, γ-catenin and increased vimentin and Twist-1 expression. β-catenin expression was downregulated in the resistant HPAC and AsPC-1 cancer cell lines but upregulated in the MCF-7. In contrast, levels of Slug and Snail were upregulated in the resistant cancer cell lines HPAC and AsPC-1 but no differences were found in the breast carcinoma MCF-7 cell line.


Epithelial-mesenchymal transition markers and HER3 expression are predictors of elisidepsin treatment response in breast and pancreatic cancer cell lines.

Teixidó C, Marés R, Aracil M, Ramón y Cajal S, Hernández-Losa J - PLoS ONE (2013)

Acquired resistance to elisidepsin induces an EMT phenotype.A) Cells were lysed, proteins were extracted and western blots were performed with equal amounts of cell lysate (50 µg protein). Expression of epithelial (E-cadherin, β-catenin, γ-catenin)- and mesenchymal (vimentin, Slug, Snail, Twist)-associated proteins differentiates between elisidepsin-sensitive and elisidepsin-resistant cell lines. β-actin was used as an internal control. These western blots were performed in triplicate. B) Expression levels of HER1, HER2, HER3, HER4, pAkt, and pMAPK were analyzed by western blot using 50 µg of protein cell lysate. The membranes were stripped and reprobed with anti-β-actin to verify equal protein loading. C, control; R, resistance.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3539985&req=5

pone-0053645-g005: Acquired resistance to elisidepsin induces an EMT phenotype.A) Cells were lysed, proteins were extracted and western blots were performed with equal amounts of cell lysate (50 µg protein). Expression of epithelial (E-cadherin, β-catenin, γ-catenin)- and mesenchymal (vimentin, Slug, Snail, Twist)-associated proteins differentiates between elisidepsin-sensitive and elisidepsin-resistant cell lines. β-actin was used as an internal control. These western blots were performed in triplicate. B) Expression levels of HER1, HER2, HER3, HER4, pAkt, and pMAPK were analyzed by western blot using 50 µg of protein cell lysate. The membranes were stripped and reprobed with anti-β-actin to verify equal protein loading. C, control; R, resistance.
Mentions: We then performed western blot analysis of the cancer cell lines with acquired resistance and compared them to the corresponding parental control cells. We identified that the three different cancer cell types with acquired resistance to elisidepsin had altered basal levels of EMT markers (Fig. 5A). All resistant cell lines showed decreased E-cadherin, γ-catenin and increased vimentin and Twist-1 expression. β-catenin expression was downregulated in the resistant HPAC and AsPC-1 cancer cell lines but upregulated in the MCF-7. In contrast, levels of Slug and Snail were upregulated in the resistant cancer cell lines HPAC and AsPC-1 but no differences were found in the breast carcinoma MCF-7 cell line.

Bottom Line: Interestingly, we observed that the basal protein expression levels of EMT markers show a significant correlation with cell viability in response to elisidepsin treatment in a panel of 12 different breast and pancreatic cancer cell lines.In addition, we generated three elisidepsin treatment-resistant cell lines (MCF-7, HPAC and AsPC-1) and analyzed the pattern of expression of different EMT markers in these cells, confirming that acquired resistance to elisidepsin is associated with a switch to the EMT state.These results show that HER3 expression is an important marker of sensitivity to elisidepsin treatment.

View Article: PubMed Central - PubMed

Affiliation: Molecular Pathology Group, Vall d'Hebron Research Institute, Universidad Autonoma of Barcelona, Barcelona, Spain.

ABSTRACT
Elisidepsin (elisidepsin trifluoroacetate, Irvalec®, PM02734) is a new synthetic depsipeptide, a result of the PharmaMar Development Program that seeks synthetic products of marine origin-derived compounds. Elisidepsin is a drug with antiproliferative activity in a wide range of tumors. In the present work we studied and characterized the mechanisms associated with sensitivity and resistance to elisidepsin treatment in a broad panel of tumor cell lines from breast and pancreas carcinomas, focusing on different factors involved in epithelial-mesenchymal transition (EMT) and the use of HER family receptors in predicting the in vitro drug response. Interestingly, we observed that the basal protein expression levels of EMT markers show a significant correlation with cell viability in response to elisidepsin treatment in a panel of 12 different breast and pancreatic cancer cell lines. In addition, we generated three elisidepsin treatment-resistant cell lines (MCF-7, HPAC and AsPC-1) and analyzed the pattern of expression of different EMT markers in these cells, confirming that acquired resistance to elisidepsin is associated with a switch to the EMT state. Furthermore, a direct correlation between basal HER3 expression and sensitivity to elisidepsin was observed; moreover, modulation of HER3 expression levels in different cancer cell lines alter their sensitivities to the drug, making them more resistant when HER3 expression is downregulated by a HER3-specific short hairpin RNA and more sensitive when the receptor is overexpressed. These results show that HER3 expression is an important marker of sensitivity to elisidepsin treatment.

Show MeSH
Related in: MedlinePlus