Limits...
Blood vessel hyperpermeability and pathophysiology in human tumour xenograft models of breast cancer: a comparison of ectopic and orthotopic tumours.

Ho KS, Poon PC, Owen SC, Shoichet MS - BMC Cancer (2012)

Bottom Line: For these results to be meaningful, the hyperpermeable vasculature and reduced lymphatic drainage associated with tumour pathophysiology must be replicated in the model.Dextran accumulation and immunostaining results suggest that small MFP tumours best replicate the vascular permeability required to observe the EPR effect in vivo.A more predictable growth profile and the absence of ulcerated skin lesions further point to the MFP model as a strong choice for long term treatment studies that initiate after a target tumour size has been reached.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Chemical Engineering & Applied Chemistry, 200 College Street, Toronto, ON M5S 3E5, Canada.

ABSTRACT

Background: Human tumour xenografts in immune compromised mice are widely used as cancer models because they are easy to reproduce and simple to use in a variety of pre-clinical assessments. Developments in nanomedicine have led to the use of tumour xenografts in testing nanoscale delivery devices, such as nanoparticles and polymer-drug conjugates, for targeting and efficacy via the enhanced permeability and retention (EPR) effect. For these results to be meaningful, the hyperpermeable vasculature and reduced lymphatic drainage associated with tumour pathophysiology must be replicated in the model. In pre-clinical breast cancer xenograft models, cells are commonly introduced via injection either orthotopically (mammary fat pad, MFP) or ectopically (subcutaneous, SC), and the organ environment experienced by the tumour cells has been shown to influence their behaviour.

Methods: To evaluate xenograft models of breast cancer in the context of EPR, both orthotopic MFP and ectopic SC injections of MDA-MB-231-H2N cells were given to NOD scid gamma (NSG) mice. Animals with matched tumours in two size categories were tested by injection of a high molecular weight dextran as a model nanocarrier. Tumours were collected and sectioned to assess dextran accumulation compared to liver tissue as a positive control. To understand the cellular basis of these observations, tumour sections were also immunostained for endothelial cells, basement membranes, pericytes, and lymphatic vessels.

Results: SC tumours required longer development times to become size matched to MFP tumours, and also presented wide size variability and ulcerated skin lesions 6 weeks after cell injection. The 3 week MFP tumour model demonstrated greater dextran accumulation than the size matched 5 week SC tumour model (for P < 0.10). Immunostaining revealed greater vascular density and thinner basement membranes in the MFP tumour model 3 weeks after cell injection. Both the MFP and SC tumours showed evidence of insufficient lymphatic drainage, as many fluid-filled and collagen IV-lined spaces were observed, which likely contain excess interstitial fluid.

Conclusions: Dextran accumulation and immunostaining results suggest that small MFP tumours best replicate the vascular permeability required to observe the EPR effect in vivo. A more predictable growth profile and the absence of ulcerated skin lesions further point to the MFP model as a strong choice for long term treatment studies that initiate after a target tumour size has been reached.

Show MeSH

Related in: MedlinePlus

MFP and SC tumour sizes. Tumour volumes were calculated based on caliper measurements post-dissection of the major and minor axes and thickness (n = 4–6). SC tumours required longer development times to become size matched to MFP tumours. Greater variability was also observed at longer times, particularly in SC tumours, where several animals had smaller tumours than the cohort examined the week before.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3539979&req=5

Figure 1: MFP and SC tumour sizes. Tumour volumes were calculated based on caliper measurements post-dissection of the major and minor axes and thickness (n = 4–6). SC tumours required longer development times to become size matched to MFP tumours. Greater variability was also observed at longer times, particularly in SC tumours, where several animals had smaller tumours than the cohort examined the week before.

Mentions: Tumour size of human tumour xenograft models grown in mice both orthotopically (MFP) and ectopically (SC) was monitored weekly through the skin in live animals using calipers. Following cell injection, MFP tumours reached a target size of 7 mm in diameter across the major axis by 3 weeks post-injection whereas SC tumours took an additional 2 weeks to reach this size. Differences in growth rate were expected, as each injection site provides a different microenvironment. Cohorts of animals were selected based on tumour size matching instead of development time because size is one of three standard measurements that determines breast cancer prognosis [23]. After resection, tumours were measured directly using calipers and the volumes were calculated based on measurements of the major and minor axes and thickness (Figure 1). The difference in time needed to achieve size matched populations for MFP and SC tumour models suggests that the organ environment influences the growth rate of xenografted cells.


Blood vessel hyperpermeability and pathophysiology in human tumour xenograft models of breast cancer: a comparison of ectopic and orthotopic tumours.

Ho KS, Poon PC, Owen SC, Shoichet MS - BMC Cancer (2012)

MFP and SC tumour sizes. Tumour volumes were calculated based on caliper measurements post-dissection of the major and minor axes and thickness (n = 4–6). SC tumours required longer development times to become size matched to MFP tumours. Greater variability was also observed at longer times, particularly in SC tumours, where several animals had smaller tumours than the cohort examined the week before.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3539979&req=5

Figure 1: MFP and SC tumour sizes. Tumour volumes were calculated based on caliper measurements post-dissection of the major and minor axes and thickness (n = 4–6). SC tumours required longer development times to become size matched to MFP tumours. Greater variability was also observed at longer times, particularly in SC tumours, where several animals had smaller tumours than the cohort examined the week before.
Mentions: Tumour size of human tumour xenograft models grown in mice both orthotopically (MFP) and ectopically (SC) was monitored weekly through the skin in live animals using calipers. Following cell injection, MFP tumours reached a target size of 7 mm in diameter across the major axis by 3 weeks post-injection whereas SC tumours took an additional 2 weeks to reach this size. Differences in growth rate were expected, as each injection site provides a different microenvironment. Cohorts of animals were selected based on tumour size matching instead of development time because size is one of three standard measurements that determines breast cancer prognosis [23]. After resection, tumours were measured directly using calipers and the volumes were calculated based on measurements of the major and minor axes and thickness (Figure 1). The difference in time needed to achieve size matched populations for MFP and SC tumour models suggests that the organ environment influences the growth rate of xenografted cells.

Bottom Line: For these results to be meaningful, the hyperpermeable vasculature and reduced lymphatic drainage associated with tumour pathophysiology must be replicated in the model.Dextran accumulation and immunostaining results suggest that small MFP tumours best replicate the vascular permeability required to observe the EPR effect in vivo.A more predictable growth profile and the absence of ulcerated skin lesions further point to the MFP model as a strong choice for long term treatment studies that initiate after a target tumour size has been reached.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Chemical Engineering & Applied Chemistry, 200 College Street, Toronto, ON M5S 3E5, Canada.

ABSTRACT

Background: Human tumour xenografts in immune compromised mice are widely used as cancer models because they are easy to reproduce and simple to use in a variety of pre-clinical assessments. Developments in nanomedicine have led to the use of tumour xenografts in testing nanoscale delivery devices, such as nanoparticles and polymer-drug conjugates, for targeting and efficacy via the enhanced permeability and retention (EPR) effect. For these results to be meaningful, the hyperpermeable vasculature and reduced lymphatic drainage associated with tumour pathophysiology must be replicated in the model. In pre-clinical breast cancer xenograft models, cells are commonly introduced via injection either orthotopically (mammary fat pad, MFP) or ectopically (subcutaneous, SC), and the organ environment experienced by the tumour cells has been shown to influence their behaviour.

Methods: To evaluate xenograft models of breast cancer in the context of EPR, both orthotopic MFP and ectopic SC injections of MDA-MB-231-H2N cells were given to NOD scid gamma (NSG) mice. Animals with matched tumours in two size categories were tested by injection of a high molecular weight dextran as a model nanocarrier. Tumours were collected and sectioned to assess dextran accumulation compared to liver tissue as a positive control. To understand the cellular basis of these observations, tumour sections were also immunostained for endothelial cells, basement membranes, pericytes, and lymphatic vessels.

Results: SC tumours required longer development times to become size matched to MFP tumours, and also presented wide size variability and ulcerated skin lesions 6 weeks after cell injection. The 3 week MFP tumour model demonstrated greater dextran accumulation than the size matched 5 week SC tumour model (for P < 0.10). Immunostaining revealed greater vascular density and thinner basement membranes in the MFP tumour model 3 weeks after cell injection. Both the MFP and SC tumours showed evidence of insufficient lymphatic drainage, as many fluid-filled and collagen IV-lined spaces were observed, which likely contain excess interstitial fluid.

Conclusions: Dextran accumulation and immunostaining results suggest that small MFP tumours best replicate the vascular permeability required to observe the EPR effect in vivo. A more predictable growth profile and the absence of ulcerated skin lesions further point to the MFP model as a strong choice for long term treatment studies that initiate after a target tumour size has been reached.

Show MeSH
Related in: MedlinePlus