Limits...
N-acetylcysteine improves antitumoural response of Interferon alpha by NF-kB downregulation in liver cancer cells.

Kretzmann NA, Chiela E, Matte U, Marroni N, Marroni CA - Comp Hepatol (2012)

Bottom Line: More importantly, NAC potentiates the cytotoxic effect of IFN, with the best response achieved with 10 mM of NAC and 2.5 x 104 of IFN.These results were confirmed by Annexin/PI staining through flow cytometry and morphologic analyses.Co-treatment reduced the expression of the nuclear transcription factor kappa-B (NF-kB).

View Article: PubMed Central - HTML - PubMed

Affiliation: Post-Graduation Program in Medicine: Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, CEP: 90050-170, Brazil. nakfilho@gmail.com.

ABSTRACT

Background: Liver cancer is one of the most common malignancies in the world and at the moment, there is no drug intervention effective for the treatment of liver tumours. Investigate the effect of N-acetylcysteine (NAC), which has been studied for its antitumoural properties, on the toxicity of hepatocarcinoma (HCC) cells in vitro when used with the drug interferon alpha-2A (IFN), which is used clinically to treat HCC.

Results: NAC, IFN and NAC plus IFN reduced cell viability, as determined by MTT assay. More importantly, NAC potentiates the cytotoxic effect of IFN, with the best response achieved with 10 mM of NAC and 2.5 x 104 of IFN. These results were confirmed by Annexin/PI staining through flow cytometry and morphologic analyses. Co-treatment reduced the expression of the nuclear transcription factor kappa-B (NF-kB). In a similar way to NAC, RNAi against p65 potentiated the toxic effect of IFN, suggesting that, indeed, NAC may be enhancing the effect of IFN through inhibition of NF-kB.

Conclusions: Our results support the notion that NAC may be an important drug for the treatment of liver tumours as primary or adjuvant therapy. IFN has a limited clinical response, and therefore, the anti-proliferative properties of NAC in the liver should be explored further as an alternative for non-responders to IFN treatment.

No MeSH data available.


Related in: MedlinePlus

Effects of IFN and NAC on cell viability of HepG2 cells with p65 knock down. HepG2 cells were treated 24 h after siRNA duplexes transfection with IFN 2.5x104 U/mL and/or NAC 10 mM, and cell viability was determined after 24 hours of treatment. Values are shown as means and standard error of media (SEM). a- COsiRNA+NAC x COsiRNA x siRNAp65 p<0.01. b- siRNAp65 x COsiRNA x siRNAp65+IFN p<0.05. c- siRNAp65+IFN x COsiRNA x COsiRNA +NAC x siRNAp65 x siRNAp65+NAC (10 and 20 mM) p<0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3539937&req=5

Figure 9: Effects of IFN and NAC on cell viability of HepG2 cells with p65 knock down. HepG2 cells were treated 24 h after siRNA duplexes transfection with IFN 2.5x104 U/mL and/or NAC 10 mM, and cell viability was determined after 24 hours of treatment. Values are shown as means and standard error of media (SEM). a- COsiRNA+NAC x COsiRNA x siRNAp65 p<0.01. b- siRNAp65 x COsiRNA x siRNAp65+IFN p<0.05. c- siRNAp65+IFN x COsiRNA x COsiRNA +NAC x siRNAp65 x siRNAp65+NAC (10 and 20 mM) p<0.05.

Mentions: The combined treatment with p65 siRNA with IFN-α for 24 h showed a decrease in cell viability that was comparable to that observed in NAC plus IFN-α treatment. On the other hand, suppression of p65 did not sensitise cells to NAC, suggesting that the mechanism of action of NAC primarily involves reduction of NF-kB (Figures9 and10).


N-acetylcysteine improves antitumoural response of Interferon alpha by NF-kB downregulation in liver cancer cells.

Kretzmann NA, Chiela E, Matte U, Marroni N, Marroni CA - Comp Hepatol (2012)

Effects of IFN and NAC on cell viability of HepG2 cells with p65 knock down. HepG2 cells were treated 24 h after siRNA duplexes transfection with IFN 2.5x104 U/mL and/or NAC 10 mM, and cell viability was determined after 24 hours of treatment. Values are shown as means and standard error of media (SEM). a- COsiRNA+NAC x COsiRNA x siRNAp65 p<0.01. b- siRNAp65 x COsiRNA x siRNAp65+IFN p<0.05. c- siRNAp65+IFN x COsiRNA x COsiRNA +NAC x siRNAp65 x siRNAp65+NAC (10 and 20 mM) p<0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3539937&req=5

Figure 9: Effects of IFN and NAC on cell viability of HepG2 cells with p65 knock down. HepG2 cells were treated 24 h after siRNA duplexes transfection with IFN 2.5x104 U/mL and/or NAC 10 mM, and cell viability was determined after 24 hours of treatment. Values are shown as means and standard error of media (SEM). a- COsiRNA+NAC x COsiRNA x siRNAp65 p<0.01. b- siRNAp65 x COsiRNA x siRNAp65+IFN p<0.05. c- siRNAp65+IFN x COsiRNA x COsiRNA +NAC x siRNAp65 x siRNAp65+NAC (10 and 20 mM) p<0.05.
Mentions: The combined treatment with p65 siRNA with IFN-α for 24 h showed a decrease in cell viability that was comparable to that observed in NAC plus IFN-α treatment. On the other hand, suppression of p65 did not sensitise cells to NAC, suggesting that the mechanism of action of NAC primarily involves reduction of NF-kB (Figures9 and10).

Bottom Line: More importantly, NAC potentiates the cytotoxic effect of IFN, with the best response achieved with 10 mM of NAC and 2.5 x 104 of IFN.These results were confirmed by Annexin/PI staining through flow cytometry and morphologic analyses.Co-treatment reduced the expression of the nuclear transcription factor kappa-B (NF-kB).

View Article: PubMed Central - HTML - PubMed

Affiliation: Post-Graduation Program in Medicine: Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, CEP: 90050-170, Brazil. nakfilho@gmail.com.

ABSTRACT

Background: Liver cancer is one of the most common malignancies in the world and at the moment, there is no drug intervention effective for the treatment of liver tumours. Investigate the effect of N-acetylcysteine (NAC), which has been studied for its antitumoural properties, on the toxicity of hepatocarcinoma (HCC) cells in vitro when used with the drug interferon alpha-2A (IFN), which is used clinically to treat HCC.

Results: NAC, IFN and NAC plus IFN reduced cell viability, as determined by MTT assay. More importantly, NAC potentiates the cytotoxic effect of IFN, with the best response achieved with 10 mM of NAC and 2.5 x 104 of IFN. These results were confirmed by Annexin/PI staining through flow cytometry and morphologic analyses. Co-treatment reduced the expression of the nuclear transcription factor kappa-B (NF-kB). In a similar way to NAC, RNAi against p65 potentiated the toxic effect of IFN, suggesting that, indeed, NAC may be enhancing the effect of IFN through inhibition of NF-kB.

Conclusions: Our results support the notion that NAC may be an important drug for the treatment of liver tumours as primary or adjuvant therapy. IFN has a limited clinical response, and therefore, the anti-proliferative properties of NAC in the liver should be explored further as an alternative for non-responders to IFN treatment.

No MeSH data available.


Related in: MedlinePlus