Limits...
N-acetylcysteine improves antitumoural response of Interferon alpha by NF-kB downregulation in liver cancer cells.

Kretzmann NA, Chiela E, Matte U, Marroni N, Marroni CA - Comp Hepatol (2012)

Bottom Line: More importantly, NAC potentiates the cytotoxic effect of IFN, with the best response achieved with 10 mM of NAC and 2.5 x 104 of IFN.These results were confirmed by Annexin/PI staining through flow cytometry and morphologic analyses.Co-treatment reduced the expression of the nuclear transcription factor kappa-B (NF-kB).

View Article: PubMed Central - HTML - PubMed

Affiliation: Post-Graduation Program in Medicine: Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, CEP: 90050-170, Brazil. nakfilho@gmail.com.

ABSTRACT

Background: Liver cancer is one of the most common malignancies in the world and at the moment, there is no drug intervention effective for the treatment of liver tumours. Investigate the effect of N-acetylcysteine (NAC), which has been studied for its antitumoural properties, on the toxicity of hepatocarcinoma (HCC) cells in vitro when used with the drug interferon alpha-2A (IFN), which is used clinically to treat HCC.

Results: NAC, IFN and NAC plus IFN reduced cell viability, as determined by MTT assay. More importantly, NAC potentiates the cytotoxic effect of IFN, with the best response achieved with 10 mM of NAC and 2.5 x 104 of IFN. These results were confirmed by Annexin/PI staining through flow cytometry and morphologic analyses. Co-treatment reduced the expression of the nuclear transcription factor kappa-B (NF-kB). In a similar way to NAC, RNAi against p65 potentiated the toxic effect of IFN, suggesting that, indeed, NAC may be enhancing the effect of IFN through inhibition of NF-kB.

Conclusions: Our results support the notion that NAC may be an important drug for the treatment of liver tumours as primary or adjuvant therapy. IFN has a limited clinical response, and therefore, the anti-proliferative properties of NAC in the liver should be explored further as an alternative for non-responders to IFN treatment.

No MeSH data available.


Related in: MedlinePlus

NAC and IFN synergistically inhibit p65 expression in HepG2 and Huh7 cells. Quantification of band density with an imaging densitometer. Results are representative of three independent experiments. Values are shown as means and standard errors of the mean (SEM).a- NAC x CO p<0.01. b- NAC+IFN x CO x IFN x NAC p<0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3539937&req=5

Figure 4: NAC and IFN synergistically inhibit p65 expression in HepG2 and Huh7 cells. Quantification of band density with an imaging densitometer. Results are representative of three independent experiments. Values are shown as means and standard errors of the mean (SEM).a- NAC x CO p<0.01. b- NAC+IFN x CO x IFN x NAC p<0.01.

Mentions: To test the role of NAC in the NF-kB pathway and induction of apoptosis, we analysed cells by flow cytometry and fluorescent microscopy to detect annexin V, and by western blot to detect NF-kB p65 subunit expression. NAC alone decreased the NF-kB p65 subunit expression in HepG2 and Huh7 cells and, more importantly, co-treatment with NAC plus IFN-α synergistically reduced the NF-kB p65 subunit expression after 72-hour treatment (Figures3 and4).


N-acetylcysteine improves antitumoural response of Interferon alpha by NF-kB downregulation in liver cancer cells.

Kretzmann NA, Chiela E, Matte U, Marroni N, Marroni CA - Comp Hepatol (2012)

NAC and IFN synergistically inhibit p65 expression in HepG2 and Huh7 cells. Quantification of band density with an imaging densitometer. Results are representative of three independent experiments. Values are shown as means and standard errors of the mean (SEM).a- NAC x CO p<0.01. b- NAC+IFN x CO x IFN x NAC p<0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3539937&req=5

Figure 4: NAC and IFN synergistically inhibit p65 expression in HepG2 and Huh7 cells. Quantification of band density with an imaging densitometer. Results are representative of three independent experiments. Values are shown as means and standard errors of the mean (SEM).a- NAC x CO p<0.01. b- NAC+IFN x CO x IFN x NAC p<0.01.
Mentions: To test the role of NAC in the NF-kB pathway and induction of apoptosis, we analysed cells by flow cytometry and fluorescent microscopy to detect annexin V, and by western blot to detect NF-kB p65 subunit expression. NAC alone decreased the NF-kB p65 subunit expression in HepG2 and Huh7 cells and, more importantly, co-treatment with NAC plus IFN-α synergistically reduced the NF-kB p65 subunit expression after 72-hour treatment (Figures3 and4).

Bottom Line: More importantly, NAC potentiates the cytotoxic effect of IFN, with the best response achieved with 10 mM of NAC and 2.5 x 104 of IFN.These results were confirmed by Annexin/PI staining through flow cytometry and morphologic analyses.Co-treatment reduced the expression of the nuclear transcription factor kappa-B (NF-kB).

View Article: PubMed Central - HTML - PubMed

Affiliation: Post-Graduation Program in Medicine: Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, CEP: 90050-170, Brazil. nakfilho@gmail.com.

ABSTRACT

Background: Liver cancer is one of the most common malignancies in the world and at the moment, there is no drug intervention effective for the treatment of liver tumours. Investigate the effect of N-acetylcysteine (NAC), which has been studied for its antitumoural properties, on the toxicity of hepatocarcinoma (HCC) cells in vitro when used with the drug interferon alpha-2A (IFN), which is used clinically to treat HCC.

Results: NAC, IFN and NAC plus IFN reduced cell viability, as determined by MTT assay. More importantly, NAC potentiates the cytotoxic effect of IFN, with the best response achieved with 10 mM of NAC and 2.5 x 104 of IFN. These results were confirmed by Annexin/PI staining through flow cytometry and morphologic analyses. Co-treatment reduced the expression of the nuclear transcription factor kappa-B (NF-kB). In a similar way to NAC, RNAi against p65 potentiated the toxic effect of IFN, suggesting that, indeed, NAC may be enhancing the effect of IFN through inhibition of NF-kB.

Conclusions: Our results support the notion that NAC may be an important drug for the treatment of liver tumours as primary or adjuvant therapy. IFN has a limited clinical response, and therefore, the anti-proliferative properties of NAC in the liver should be explored further as an alternative for non-responders to IFN treatment.

No MeSH data available.


Related in: MedlinePlus