Limits...
Pharmacogenetics of human ABC transporter ABCC11: new insights into apocrine gland growth and metabolite secretion.

Ishikawa T, Toyoda Y, Yoshiura K, Niikawa N - Front Genet (2013)

Bottom Line: Cell secretion is an important physiological process that ensures smooth metabolic activities and tissue repair as well as growth and immunological functions in the body.The wild-type (Gly180) of ABCC11 is associated with wet-type earwax, axillary osmidrosis, and colostrum secretion from the mammary gland as well as the potential risk of mastopathy.Furthermore, the SNP (538G > A) in the ABCC11 gene is suggested to be a clinical biomarker for the prediction of chemotherapeutic efficacy.

View Article: PubMed Central - PubMed

Affiliation: Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology Yokohama, Japan ; Omics Science Center, RIKEN Yokohama Institute Yokohama, Japan.

ABSTRACT
Cell secretion is an important physiological process that ensures smooth metabolic activities and tissue repair as well as growth and immunological functions in the body. Apocrine secretion occurs when the secretory process is accomplished with a partial loss of cell cytoplasm. The secretory materials are contained within secretory vesicles and are released during secretion as cytoplasmic fragments into the glandular lumen or interstitial space. The recent finding that the non-synonymous single nucleotide polymorphisms (SNP) 538G > A (rs17822931; Gly180Arg) in the ABCC11 gene determines the type of earwax in humans has shed light on the novel function of this ABC (ATP-binding cassette) transporter in apocrine glands. The wild-type (Gly180) of ABCC11 is associated with wet-type earwax, axillary osmidrosis, and colostrum secretion from the mammary gland as well as the potential risk of mastopathy. Furthermore, the SNP (538G > A) in the ABCC11 gene is suggested to be a clinical biomarker for the prediction of chemotherapeutic efficacy. The aim of this review article is to provide an overview on the discovery and characterization of genetic polymorphisms in the human ABCC11 gene and to explain the impact of ABCC11 538G > A on the apocrine phenotype as well as the anthropological aspect of this SNP in the ABCC11 gene and patients' response to nucleoside-based chemotherapy.

No MeSH data available.


Related in: MedlinePlus

The allele frequencies of the wild-type (WT; Gly180) and 538G > A (Arg180) variant of human ABCC11 among different ethnic populations (A) and inter-continental migration of Homo sapiens(B). Data are from Yoshiura et al. (2006) and Toyoda et al. (2008).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3539816&req=5

Figure 3: The allele frequencies of the wild-type (WT; Gly180) and 538G > A (Arg180) variant of human ABCC11 among different ethnic populations (A) and inter-continental migration of Homo sapiens(B). Data are from Yoshiura et al. (2006) and Toyoda et al. (2008).

Mentions: To date, more than 10 non-synonymous single-nucleotide polymorphisms (SNPs) have been reported in the human ABCC11 gene (Figure 2). Among those SNPs, one SNP (rs17822931; 538G > A, Gly180Arg) determines the human earwax type (Yoshiura et al., 2006). Interestingly, this SNP (538G > A) exhibits wide ethnic differences in allelic frequency (Table 2). In Mongoloid populations in Asia, the frequency of the 538A allele is predominantly high, whereas the frequency of this allele is low among Caucasians and Africans (Yoshiura et al., 2006; Toyoda et al., 2008; Figure 3A). The frequency of the 538A allele exhibits a north-south and east-west downward geographical gradient with the highest peak in Korea. It is suggested that the 538A allele arose in northeast Asia and thereafter spread throughout the world (Yoshiura et al., 2006), apparently reflecting the inter-continental migration of Homo sapiens (Figure 3B). A similar geographical gradient was also observed in the frequency of the 2677G (Ala893) allele of the ABCB1 (P-glycoprotein/MDR1) gene (Sakurai et al., 2007). In this regard, anthropological aspects of SNP 538G > A in the ABCC11 gene are described in the following section.


Pharmacogenetics of human ABC transporter ABCC11: new insights into apocrine gland growth and metabolite secretion.

Ishikawa T, Toyoda Y, Yoshiura K, Niikawa N - Front Genet (2013)

The allele frequencies of the wild-type (WT; Gly180) and 538G > A (Arg180) variant of human ABCC11 among different ethnic populations (A) and inter-continental migration of Homo sapiens(B). Data are from Yoshiura et al. (2006) and Toyoda et al. (2008).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3539816&req=5

Figure 3: The allele frequencies of the wild-type (WT; Gly180) and 538G > A (Arg180) variant of human ABCC11 among different ethnic populations (A) and inter-continental migration of Homo sapiens(B). Data are from Yoshiura et al. (2006) and Toyoda et al. (2008).
Mentions: To date, more than 10 non-synonymous single-nucleotide polymorphisms (SNPs) have been reported in the human ABCC11 gene (Figure 2). Among those SNPs, one SNP (rs17822931; 538G > A, Gly180Arg) determines the human earwax type (Yoshiura et al., 2006). Interestingly, this SNP (538G > A) exhibits wide ethnic differences in allelic frequency (Table 2). In Mongoloid populations in Asia, the frequency of the 538A allele is predominantly high, whereas the frequency of this allele is low among Caucasians and Africans (Yoshiura et al., 2006; Toyoda et al., 2008; Figure 3A). The frequency of the 538A allele exhibits a north-south and east-west downward geographical gradient with the highest peak in Korea. It is suggested that the 538A allele arose in northeast Asia and thereafter spread throughout the world (Yoshiura et al., 2006), apparently reflecting the inter-continental migration of Homo sapiens (Figure 3B). A similar geographical gradient was also observed in the frequency of the 2677G (Ala893) allele of the ABCB1 (P-glycoprotein/MDR1) gene (Sakurai et al., 2007). In this regard, anthropological aspects of SNP 538G > A in the ABCC11 gene are described in the following section.

Bottom Line: Cell secretion is an important physiological process that ensures smooth metabolic activities and tissue repair as well as growth and immunological functions in the body.The wild-type (Gly180) of ABCC11 is associated with wet-type earwax, axillary osmidrosis, and colostrum secretion from the mammary gland as well as the potential risk of mastopathy.Furthermore, the SNP (538G > A) in the ABCC11 gene is suggested to be a clinical biomarker for the prediction of chemotherapeutic efficacy.

View Article: PubMed Central - PubMed

Affiliation: Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology Yokohama, Japan ; Omics Science Center, RIKEN Yokohama Institute Yokohama, Japan.

ABSTRACT
Cell secretion is an important physiological process that ensures smooth metabolic activities and tissue repair as well as growth and immunological functions in the body. Apocrine secretion occurs when the secretory process is accomplished with a partial loss of cell cytoplasm. The secretory materials are contained within secretory vesicles and are released during secretion as cytoplasmic fragments into the glandular lumen or interstitial space. The recent finding that the non-synonymous single nucleotide polymorphisms (SNP) 538G > A (rs17822931; Gly180Arg) in the ABCC11 gene determines the type of earwax in humans has shed light on the novel function of this ABC (ATP-binding cassette) transporter in apocrine glands. The wild-type (Gly180) of ABCC11 is associated with wet-type earwax, axillary osmidrosis, and colostrum secretion from the mammary gland as well as the potential risk of mastopathy. Furthermore, the SNP (538G > A) in the ABCC11 gene is suggested to be a clinical biomarker for the prediction of chemotherapeutic efficacy. The aim of this review article is to provide an overview on the discovery and characterization of genetic polymorphisms in the human ABCC11 gene and to explain the impact of ABCC11 538G > A on the apocrine phenotype as well as the anthropological aspect of this SNP in the ABCC11 gene and patients' response to nucleoside-based chemotherapy.

No MeSH data available.


Related in: MedlinePlus