Limits...
Real-time system for studies of the effects of acoustic feedback on animal vocalizations.

Skocik M, Kozhevnikov A - Front Neural Circuits (2013)

Bottom Line: We describe an apparatus for generating real-time acoustic feedback.It is low-cost and can be programmed for a variety of behavioral experiments requiring acoustic feedback or neural stimulation.We use the system to study the effects of acoustic feedback on birds' vocalizations and demonstrate that such an acoustic feedback can cause both immediate and long-term changes to birds' songs.

View Article: PubMed Central - PubMed

Affiliation: Department of Physics, Pennsylvania State University University Park, PA, USA.

ABSTRACT
Studies of behavioral and neural responses to distorted auditory feedback (DAF) can help shed light on the neural mechanisms of animal vocalizations. We describe an apparatus for generating real-time acoustic feedback. The system can very rapidly detect acoustic features in a song and output acoustic signals if the detected features match the desired acoustic template. The system uses spectrogram-based detection of acoustic elements. It is low-cost and can be programmed for a variety of behavioral experiments requiring acoustic feedback or neural stimulation. We use the system to study the effects of acoustic feedback on birds' vocalizations and demonstrate that such an acoustic feedback can cause both immediate and long-term changes to birds' songs.

No MeSH data available.


Related in: MedlinePlus

Prolonged exposure of the bird to DAF causes gradual changes in the song. The mean pitch of one of the target song syllable was manipulated by feedback conditional on pitch. Each datapoint is the pitch of the target syllable averaged over all the renditions of the target syllable sung by the bird on a given day. The number of renditions varies from day to day (mean = 208, min = 126, max = 288). Error bars are s.e.m. Dashed lines are the values of the threshold. Arrows indicate the direction in which the syllable frequency was expected to change in response to DAF. Larger error bars on day 12 are mostly due to the smallest number of target syllable renditions (n = 126) sung on that day.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3539774&req=5

Figure 4: Prolonged exposure of the bird to DAF causes gradual changes in the song. The mean pitch of one of the target song syllable was manipulated by feedback conditional on pitch. Each datapoint is the pitch of the target syllable averaged over all the renditions of the target syllable sung by the bird on a given day. The number of renditions varies from day to day (mean = 208, min = 126, max = 288). Error bars are s.e.m. Dashed lines are the values of the threshold. Arrows indicate the direction in which the syllable frequency was expected to change in response to DAF. Larger error bars on day 12 are mostly due to the smallest number of target syllable renditions (n = 126) sung on that day.

Mentions: We tested whether such conditional DAF could shift the mean syllable pitch in both directions. Figure 4 shows the long-term effects of DAF which is conditional on the syllable pitch. During days 1–6, the feedback was played back if the pitch was less than 3530 Hz; during days 7–12, the feedback was played back if the pitch was greater than 3530 Hz; during days 13–18, the feedback was played back if the pitch was less than 3510 Hz.


Real-time system for studies of the effects of acoustic feedback on animal vocalizations.

Skocik M, Kozhevnikov A - Front Neural Circuits (2013)

Prolonged exposure of the bird to DAF causes gradual changes in the song. The mean pitch of one of the target song syllable was manipulated by feedback conditional on pitch. Each datapoint is the pitch of the target syllable averaged over all the renditions of the target syllable sung by the bird on a given day. The number of renditions varies from day to day (mean = 208, min = 126, max = 288). Error bars are s.e.m. Dashed lines are the values of the threshold. Arrows indicate the direction in which the syllable frequency was expected to change in response to DAF. Larger error bars on day 12 are mostly due to the smallest number of target syllable renditions (n = 126) sung on that day.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3539774&req=5

Figure 4: Prolonged exposure of the bird to DAF causes gradual changes in the song. The mean pitch of one of the target song syllable was manipulated by feedback conditional on pitch. Each datapoint is the pitch of the target syllable averaged over all the renditions of the target syllable sung by the bird on a given day. The number of renditions varies from day to day (mean = 208, min = 126, max = 288). Error bars are s.e.m. Dashed lines are the values of the threshold. Arrows indicate the direction in which the syllable frequency was expected to change in response to DAF. Larger error bars on day 12 are mostly due to the smallest number of target syllable renditions (n = 126) sung on that day.
Mentions: We tested whether such conditional DAF could shift the mean syllable pitch in both directions. Figure 4 shows the long-term effects of DAF which is conditional on the syllable pitch. During days 1–6, the feedback was played back if the pitch was less than 3530 Hz; during days 7–12, the feedback was played back if the pitch was greater than 3530 Hz; during days 13–18, the feedback was played back if the pitch was less than 3510 Hz.

Bottom Line: We describe an apparatus for generating real-time acoustic feedback.It is low-cost and can be programmed for a variety of behavioral experiments requiring acoustic feedback or neural stimulation.We use the system to study the effects of acoustic feedback on birds' vocalizations and demonstrate that such an acoustic feedback can cause both immediate and long-term changes to birds' songs.

View Article: PubMed Central - PubMed

Affiliation: Department of Physics, Pennsylvania State University University Park, PA, USA.

ABSTRACT
Studies of behavioral and neural responses to distorted auditory feedback (DAF) can help shed light on the neural mechanisms of animal vocalizations. We describe an apparatus for generating real-time acoustic feedback. The system can very rapidly detect acoustic features in a song and output acoustic signals if the detected features match the desired acoustic template. The system uses spectrogram-based detection of acoustic elements. It is low-cost and can be programmed for a variety of behavioral experiments requiring acoustic feedback or neural stimulation. We use the system to study the effects of acoustic feedback on birds' vocalizations and demonstrate that such an acoustic feedback can cause both immediate and long-term changes to birds' songs.

No MeSH data available.


Related in: MedlinePlus