Limits...
Real-time system for studies of the effects of acoustic feedback on animal vocalizations.

Skocik M, Kozhevnikov A - Front Neural Circuits (2013)

Bottom Line: We describe an apparatus for generating real-time acoustic feedback.It is low-cost and can be programmed for a variety of behavioral experiments requiring acoustic feedback or neural stimulation.We use the system to study the effects of acoustic feedback on birds' vocalizations and demonstrate that such an acoustic feedback can cause both immediate and long-term changes to birds' songs.

View Article: PubMed Central - PubMed

Affiliation: Department of Physics, Pennsylvania State University University Park, PA, USA.

ABSTRACT
Studies of behavioral and neural responses to distorted auditory feedback (DAF) can help shed light on the neural mechanisms of animal vocalizations. We describe an apparatus for generating real-time acoustic feedback. The system can very rapidly detect acoustic features in a song and output acoustic signals if the detected features match the desired acoustic template. The system uses spectrogram-based detection of acoustic elements. It is low-cost and can be programmed for a variety of behavioral experiments requiring acoustic feedback or neural stimulation. We use the system to study the effects of acoustic feedback on birds' vocalizations and demonstrate that such an acoustic feedback can cause both immediate and long-term changes to birds' songs.

No MeSH data available.


DAF increases the duration of the time interval between Bengalese finch song syllables. Shown above are the histograms of the time intervals between two subsequent syllables in the song in the presence of DAF (blue) and without DAF (red). The means are: Δ tmean = 74.8 ms (control, N = 637 syllables) and Δ tmean = 75.7 ms (feedback, N = 97 syllables), the difference is statistically significant (p = 0.001, two-way Kolmogorov–Smirnov test).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3539774&req=5

Figure 3: DAF increases the duration of the time interval between Bengalese finch song syllables. Shown above are the histograms of the time intervals between two subsequent syllables in the song in the presence of DAF (blue) and without DAF (red). The means are: Δ tmean = 74.8 ms (control, N = 637 syllables) and Δ tmean = 75.7 ms (feedback, N = 97 syllables), the difference is statistically significant (p = 0.001, two-way Kolmogorov–Smirnov test).

Mentions: Figure 3 shows the distributions of the time intervals between the target syllable and the following syllable when the feedback is present (blue histogram) and when there is no feedback (red histogram). The widths of the distributions are due to the natural variability of the song timing. In the presence of feedback, the time intervals between the syllables become longer. Without DAF, the mean interval is 74.8 ms (N = 637 syllables); in the presence of DAF, the mean interval is 75.7 ms (N = 97 syllables). Although the change of the mean duration is small compared to the widths of the distributions, the effect is highly statistically significant (p = 0.001, two-way Kolmogorov–Smirnov test). The observed lengthening of the time interval between the song syllables is consistent with previous observations (Sakata and Brainard, 2006). Thus, our acoustic feedback has an immediate effect on the song: DAF immediately and reversibly affects song timing.


Real-time system for studies of the effects of acoustic feedback on animal vocalizations.

Skocik M, Kozhevnikov A - Front Neural Circuits (2013)

DAF increases the duration of the time interval between Bengalese finch song syllables. Shown above are the histograms of the time intervals between two subsequent syllables in the song in the presence of DAF (blue) and without DAF (red). The means are: Δ tmean = 74.8 ms (control, N = 637 syllables) and Δ tmean = 75.7 ms (feedback, N = 97 syllables), the difference is statistically significant (p = 0.001, two-way Kolmogorov–Smirnov test).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3539774&req=5

Figure 3: DAF increases the duration of the time interval between Bengalese finch song syllables. Shown above are the histograms of the time intervals between two subsequent syllables in the song in the presence of DAF (blue) and without DAF (red). The means are: Δ tmean = 74.8 ms (control, N = 637 syllables) and Δ tmean = 75.7 ms (feedback, N = 97 syllables), the difference is statistically significant (p = 0.001, two-way Kolmogorov–Smirnov test).
Mentions: Figure 3 shows the distributions of the time intervals between the target syllable and the following syllable when the feedback is present (blue histogram) and when there is no feedback (red histogram). The widths of the distributions are due to the natural variability of the song timing. In the presence of feedback, the time intervals between the syllables become longer. Without DAF, the mean interval is 74.8 ms (N = 637 syllables); in the presence of DAF, the mean interval is 75.7 ms (N = 97 syllables). Although the change of the mean duration is small compared to the widths of the distributions, the effect is highly statistically significant (p = 0.001, two-way Kolmogorov–Smirnov test). The observed lengthening of the time interval between the song syllables is consistent with previous observations (Sakata and Brainard, 2006). Thus, our acoustic feedback has an immediate effect on the song: DAF immediately and reversibly affects song timing.

Bottom Line: We describe an apparatus for generating real-time acoustic feedback.It is low-cost and can be programmed for a variety of behavioral experiments requiring acoustic feedback or neural stimulation.We use the system to study the effects of acoustic feedback on birds' vocalizations and demonstrate that such an acoustic feedback can cause both immediate and long-term changes to birds' songs.

View Article: PubMed Central - PubMed

Affiliation: Department of Physics, Pennsylvania State University University Park, PA, USA.

ABSTRACT
Studies of behavioral and neural responses to distorted auditory feedback (DAF) can help shed light on the neural mechanisms of animal vocalizations. We describe an apparatus for generating real-time acoustic feedback. The system can very rapidly detect acoustic features in a song and output acoustic signals if the detected features match the desired acoustic template. The system uses spectrogram-based detection of acoustic elements. It is low-cost and can be programmed for a variety of behavioral experiments requiring acoustic feedback or neural stimulation. We use the system to study the effects of acoustic feedback on birds' vocalizations and demonstrate that such an acoustic feedback can cause both immediate and long-term changes to birds' songs.

No MeSH data available.