Limits...
Benchmarking electrophysiological models of human atrial myocytes.

Wilhelms M, Hettmann H, Maleckar MM, Koivumäki JT, Dössel O, Seemann G - Front Physiol (2013)

Bottom Line: The aim of this work is to give an overview of strengths and weaknesses of these models depending on the purpose and the general requirements of simulations.Therefore, these models were systematically benchmarked with respect to general mathematical properties and their ability to reproduce certain electrophysiological phenomena, such as action potential (AP) alternans.The healthy and remodeled model variants were compared with experimental results in single-cell, 1D and 2D tissue simulations to investigate AP and restitution properties, as well as the initiation of reentrant circuits.

View Article: PubMed Central - PubMed

Affiliation: Institute of Biomedical Engineering, Karlsruhe Institute of Technology Karlsruhe, Germany.

ABSTRACT
Mathematical modeling of cardiac electrophysiology is an insightful method to investigate the underlying mechanisms responsible for arrhythmias such as atrial fibrillation (AF). In past years, five models of human atrial electrophysiology with different formulations of ionic currents, and consequently diverging properties, have been published. The aim of this work is to give an overview of strengths and weaknesses of these models depending on the purpose and the general requirements of simulations. Therefore, these models were systematically benchmarked with respect to general mathematical properties and their ability to reproduce certain electrophysiological phenomena, such as action potential (AP) alternans. To assess the models' ability to replicate modified properties of human myocytes and tissue in cardiac disease, electrical remodeling in chronic atrial fibrillation (cAF) was chosen as test case. The healthy and remodeled model variants were compared with experimental results in single-cell, 1D and 2D tissue simulations to investigate AP and restitution properties, as well as the initiation of reentrant circuits.

No MeSH data available.


Related in: MedlinePlus

Mapping of rotor center trajectories after initiation of reentrant circuit in 2D tissue patch using the control and cAF models. Control C and G model failed to initiate a rotor in the 2D patch. N, M, and K models show ellipsoidal trajectory in the control case. The K model shows a stable circular trajectory in case of cAF, whereas rotors of the other models present a meandering star-shaped trajectory occupying more space.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3539682&req=5

Figure 7: Mapping of rotor center trajectories after initiation of reentrant circuit in 2D tissue patch using the control and cAF models. Control C and G model failed to initiate a rotor in the 2D patch. N, M, and K models show ellipsoidal trajectory in the control case. The K model shows a stable circular trajectory in case of cAF, whereas rotors of the other models present a meandering star-shaped trajectory occupying more space.

Mentions: In order to better understand the dynamics of rotors induced using different versions of the models, trajectories of rotor centers in control and cAF versions of each of the models are presented in Figure 7. Rotor centers were tracked between 2 and 4 s during simulation. In the control versions of the C and G models, no rotor could be initiated, whereas in the cAF versions, induced rotors revealed regularly meandering wave tips with slightly curved, star-shaped trajectories. The trajectory in the simulations employing the cAF G model occupied the largest area of the atrial patch. The N and M models show similar trajectories in both control and cAF versions. In the control case, trajectories had the shape of small ellipsoids, whereas in the case of the cAF models, these took the shape of a star and occupied a larger area than in control. The K model shows an elliptical trajectory in the control case and occupies a similar area as compared to those of the N and M models. However, in simulations employing the cAF version of the K model, the rotor center remains stable on a markedly small circle.


Benchmarking electrophysiological models of human atrial myocytes.

Wilhelms M, Hettmann H, Maleckar MM, Koivumäki JT, Dössel O, Seemann G - Front Physiol (2013)

Mapping of rotor center trajectories after initiation of reentrant circuit in 2D tissue patch using the control and cAF models. Control C and G model failed to initiate a rotor in the 2D patch. N, M, and K models show ellipsoidal trajectory in the control case. The K model shows a stable circular trajectory in case of cAF, whereas rotors of the other models present a meandering star-shaped trajectory occupying more space.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3539682&req=5

Figure 7: Mapping of rotor center trajectories after initiation of reentrant circuit in 2D tissue patch using the control and cAF models. Control C and G model failed to initiate a rotor in the 2D patch. N, M, and K models show ellipsoidal trajectory in the control case. The K model shows a stable circular trajectory in case of cAF, whereas rotors of the other models present a meandering star-shaped trajectory occupying more space.
Mentions: In order to better understand the dynamics of rotors induced using different versions of the models, trajectories of rotor centers in control and cAF versions of each of the models are presented in Figure 7. Rotor centers were tracked between 2 and 4 s during simulation. In the control versions of the C and G models, no rotor could be initiated, whereas in the cAF versions, induced rotors revealed regularly meandering wave tips with slightly curved, star-shaped trajectories. The trajectory in the simulations employing the cAF G model occupied the largest area of the atrial patch. The N and M models show similar trajectories in both control and cAF versions. In the control case, trajectories had the shape of small ellipsoids, whereas in the case of the cAF models, these took the shape of a star and occupied a larger area than in control. The K model shows an elliptical trajectory in the control case and occupies a similar area as compared to those of the N and M models. However, in simulations employing the cAF version of the K model, the rotor center remains stable on a markedly small circle.

Bottom Line: The aim of this work is to give an overview of strengths and weaknesses of these models depending on the purpose and the general requirements of simulations.Therefore, these models were systematically benchmarked with respect to general mathematical properties and their ability to reproduce certain electrophysiological phenomena, such as action potential (AP) alternans.The healthy and remodeled model variants were compared with experimental results in single-cell, 1D and 2D tissue simulations to investigate AP and restitution properties, as well as the initiation of reentrant circuits.

View Article: PubMed Central - PubMed

Affiliation: Institute of Biomedical Engineering, Karlsruhe Institute of Technology Karlsruhe, Germany.

ABSTRACT
Mathematical modeling of cardiac electrophysiology is an insightful method to investigate the underlying mechanisms responsible for arrhythmias such as atrial fibrillation (AF). In past years, five models of human atrial electrophysiology with different formulations of ionic currents, and consequently diverging properties, have been published. The aim of this work is to give an overview of strengths and weaknesses of these models depending on the purpose and the general requirements of simulations. Therefore, these models were systematically benchmarked with respect to general mathematical properties and their ability to reproduce certain electrophysiological phenomena, such as action potential (AP) alternans. To assess the models' ability to replicate modified properties of human myocytes and tissue in cardiac disease, electrical remodeling in chronic atrial fibrillation (cAF) was chosen as test case. The healthy and remodeled model variants were compared with experimental results in single-cell, 1D and 2D tissue simulations to investigate AP and restitution properties, as well as the initiation of reentrant circuits.

No MeSH data available.


Related in: MedlinePlus