Limits...
A New GLLD Operator for Mass Detection in Digital Mammograms.

Gargouri N, Dammak Masmoudi A, Sellami Masmoudi D, Abid R - Int J Biomed Imaging (2012)

Bottom Line: We have used 1000 regions of interest (ROIs) obtained from the Digital Database for Screening Mammography (DDSM).The area under the curve of the corresponding approach has been found to be A(z) = 0.95 for the mass detection step.A comparative study with previous approaches proves that our approach offers the best performances.

View Article: PubMed Central - PubMed

Affiliation: Computer Imaging and Electronic System Group, CEM Laboratory, Department of Electrical Engineering, Sfax Engineering School, University of Sfax, P.O. Box 1169, 3038 Sfax, Tunisia.

ABSTRACT
During the last decade, several works have dealt with computer automatic diagnosis (CAD) of masses in digital mammograms. Generally, the main difficulty remains the detection of masses. This work proposes an efficient methodology for mass detection based on a new local feature extraction. Local binary pattern (LBP) operator and its variants proposed by Ojala are a powerful tool for textures classification. However, it has been proved that such operators are not able to model at their own texture masses. We propose in this paper a new local pattern model named gray level and local difference (GLLD) where we take into consideration absolute gray level values as well as local difference as local binary features. Artificial neural networks (ANNs), support vector machine (SVM), and k-nearest neighbors (kNNs) are, then, used for classifying masses from nonmasses, illustrating better performance of ANN classifier. We have used 1000 regions of interest (ROIs) obtained from the Digital Database for Screening Mammography (DDSM). The area under the curve of the corresponding approach has been found to be A(z) = 0.95 for the mass detection step. A comparative study with previous approaches proves that our approach offers the best performances.

No MeSH data available.


Related in: MedlinePlus

The image results after the application of the three operator and their fusion.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3539378&req=5

fig5: The image results after the application of the three operator and their fusion.

Mentions: The new value of the central pixel, which expresses the gray level of the image, represents also a discriminant information. So, to make it consistent with the two previous operators SGLLD and MGLLD, we code it as(14)CGLLDP,R=t(gc mean,cI),where t is already defined in (13), cI corresponds to the threshold and is set as the mean gray level of the whole input image. CGLLD is defined to extract the image local gray level. Figure 5 illustrates the image results after the application of the three operators and their fusion.


A New GLLD Operator for Mass Detection in Digital Mammograms.

Gargouri N, Dammak Masmoudi A, Sellami Masmoudi D, Abid R - Int J Biomed Imaging (2012)

The image results after the application of the three operator and their fusion.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3539378&req=5

fig5: The image results after the application of the three operator and their fusion.
Mentions: The new value of the central pixel, which expresses the gray level of the image, represents also a discriminant information. So, to make it consistent with the two previous operators SGLLD and MGLLD, we code it as(14)CGLLDP,R=t(gc mean,cI),where t is already defined in (13), cI corresponds to the threshold and is set as the mean gray level of the whole input image. CGLLD is defined to extract the image local gray level. Figure 5 illustrates the image results after the application of the three operators and their fusion.

Bottom Line: We have used 1000 regions of interest (ROIs) obtained from the Digital Database for Screening Mammography (DDSM).The area under the curve of the corresponding approach has been found to be A(z) = 0.95 for the mass detection step.A comparative study with previous approaches proves that our approach offers the best performances.

View Article: PubMed Central - PubMed

Affiliation: Computer Imaging and Electronic System Group, CEM Laboratory, Department of Electrical Engineering, Sfax Engineering School, University of Sfax, P.O. Box 1169, 3038 Sfax, Tunisia.

ABSTRACT
During the last decade, several works have dealt with computer automatic diagnosis (CAD) of masses in digital mammograms. Generally, the main difficulty remains the detection of masses. This work proposes an efficient methodology for mass detection based on a new local feature extraction. Local binary pattern (LBP) operator and its variants proposed by Ojala are a powerful tool for textures classification. However, it has been proved that such operators are not able to model at their own texture masses. We propose in this paper a new local pattern model named gray level and local difference (GLLD) where we take into consideration absolute gray level values as well as local difference as local binary features. Artificial neural networks (ANNs), support vector machine (SVM), and k-nearest neighbors (kNNs) are, then, used for classifying masses from nonmasses, illustrating better performance of ANN classifier. We have used 1000 regions of interest (ROIs) obtained from the Digital Database for Screening Mammography (DDSM). The area under the curve of the corresponding approach has been found to be A(z) = 0.95 for the mass detection step. A comparative study with previous approaches proves that our approach offers the best performances.

No MeSH data available.


Related in: MedlinePlus