Limits...
Cancer treatment using peptides: current therapies and future prospects.

Thundimadathil J - J Amino Acids (2012)

Bottom Line: Peptide-based hormonal therapy has been extensively studied and utilized for the treatment of breast and prostate cancers.Tremendous amount of clinical data is currently available attesting to the efficiency of peptide-based cancer vaccines.Combining immunotherapy with conventional therapies such as radiation and chemotherapy or combining an anticancer peptide with a nonpeptidic cytotoxic drug is an example of this emerging field.

View Article: PubMed Central - PubMed

Affiliation: American Peptide Company Inc., Sunnyvale, CA 94086, USA.

ABSTRACT
This paper discusses the role of peptides in cancer therapy with special emphasis on peptide drugs which are already approved and those in clinical trials. The potential of peptides in cancer treatment is evident from a variety of different strategies that are available to address the progression of tumor growth and propagation of the disease. Use of peptides that can directly target cancer cells without affecting normal cells (targeted therapy) is evolving as an alternate strategy to conventional chemotherapy. Peptide can be utilized directly as a cytotoxic agent through various mechanisms or can act as a carrier of cytotoxic agents and radioisotopes by specifically targeting cancer cells. Peptide-based hormonal therapy has been extensively studied and utilized for the treatment of breast and prostate cancers. Tremendous amount of clinical data is currently available attesting to the efficiency of peptide-based cancer vaccines. Combination therapy is emerging as an important strategy to achieve synergistic effects in fighting cancer as a single method alone may not be efficient enough to yield positive results. Combining immunotherapy with conventional therapies such as radiation and chemotherapy or combining an anticancer peptide with a nonpeptidic cytotoxic drug is an example of this emerging field.

No MeSH data available.


Related in: MedlinePlus

Peptide-based cancer vaccines: tumor cells express antigens known as tumor-associated antigens (TAAs) that can be recognized by the host's immune system (a). These TAAs mixed with an adjuvant can be injected into cancer patients in an attempt to induce a systemic immune response (b). The antigen presenting cell (APC) presents the antigen to T cell ((c) and (d)), thereby the T cell is activated (e) which results in the destruction of the cancer cell (f).
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3539351&req=5

fig3: Peptide-based cancer vaccines: tumor cells express antigens known as tumor-associated antigens (TAAs) that can be recognized by the host's immune system (a). These TAAs mixed with an adjuvant can be injected into cancer patients in an attempt to induce a systemic immune response (b). The antigen presenting cell (APC) presents the antigen to T cell ((c) and (d)), thereby the T cell is activated (e) which results in the destruction of the cancer cell (f).

Mentions: Active immunization seems to be one of the promising strategies to treat cancer though many approaches based on the employment of immune cells or immune molecules have been studied [57, 58]. In the last decade, this idea of vaccinations against cancer has transformed into clinical studies aiming to optimally deliver vaccines based on defined antigens to induce anticancer immunity. This method of treating cancerous cells relies on vaccines consisting of peptides derived from the protein sequence of candidate tumor-associated or specific antigens [57]. Tumor cells express antigens known as tumor-associated antigens (TAAs) that can be recognized by the host's immune system (T cells). Many TAAs have already been identified and molecularly characterized [59, 60]. These TAAs can be injected into cancer patients in an attempt to induce a systemic immune response that may result in the destruction of the cancer growing in different body tissues. This procedure is defined as active immunotherapy or vaccination as the host's immune system is either activated de novo or restimulated to mount an effective, tumor-specific immune reaction that may ultimately lead to tumor regression (Figure 3). Any protein/peptide produced in a tumor cell that has an abnormal structure due to mutation can act as a tumor antigen. Such abnormal proteins are produced due to mutation of the concerned gene. Various clinical studies focus on the therapeutic potential of active immunization or vaccination with TAA peptides in patients with metastatic cancer [61–63].


Cancer treatment using peptides: current therapies and future prospects.

Thundimadathil J - J Amino Acids (2012)

Peptide-based cancer vaccines: tumor cells express antigens known as tumor-associated antigens (TAAs) that can be recognized by the host's immune system (a). These TAAs mixed with an adjuvant can be injected into cancer patients in an attempt to induce a systemic immune response (b). The antigen presenting cell (APC) presents the antigen to T cell ((c) and (d)), thereby the T cell is activated (e) which results in the destruction of the cancer cell (f).
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3539351&req=5

fig3: Peptide-based cancer vaccines: tumor cells express antigens known as tumor-associated antigens (TAAs) that can be recognized by the host's immune system (a). These TAAs mixed with an adjuvant can be injected into cancer patients in an attempt to induce a systemic immune response (b). The antigen presenting cell (APC) presents the antigen to T cell ((c) and (d)), thereby the T cell is activated (e) which results in the destruction of the cancer cell (f).
Mentions: Active immunization seems to be one of the promising strategies to treat cancer though many approaches based on the employment of immune cells or immune molecules have been studied [57, 58]. In the last decade, this idea of vaccinations against cancer has transformed into clinical studies aiming to optimally deliver vaccines based on defined antigens to induce anticancer immunity. This method of treating cancerous cells relies on vaccines consisting of peptides derived from the protein sequence of candidate tumor-associated or specific antigens [57]. Tumor cells express antigens known as tumor-associated antigens (TAAs) that can be recognized by the host's immune system (T cells). Many TAAs have already been identified and molecularly characterized [59, 60]. These TAAs can be injected into cancer patients in an attempt to induce a systemic immune response that may result in the destruction of the cancer growing in different body tissues. This procedure is defined as active immunotherapy or vaccination as the host's immune system is either activated de novo or restimulated to mount an effective, tumor-specific immune reaction that may ultimately lead to tumor regression (Figure 3). Any protein/peptide produced in a tumor cell that has an abnormal structure due to mutation can act as a tumor antigen. Such abnormal proteins are produced due to mutation of the concerned gene. Various clinical studies focus on the therapeutic potential of active immunization or vaccination with TAA peptides in patients with metastatic cancer [61–63].

Bottom Line: Peptide-based hormonal therapy has been extensively studied and utilized for the treatment of breast and prostate cancers.Tremendous amount of clinical data is currently available attesting to the efficiency of peptide-based cancer vaccines.Combining immunotherapy with conventional therapies such as radiation and chemotherapy or combining an anticancer peptide with a nonpeptidic cytotoxic drug is an example of this emerging field.

View Article: PubMed Central - PubMed

Affiliation: American Peptide Company Inc., Sunnyvale, CA 94086, USA.

ABSTRACT
This paper discusses the role of peptides in cancer therapy with special emphasis on peptide drugs which are already approved and those in clinical trials. The potential of peptides in cancer treatment is evident from a variety of different strategies that are available to address the progression of tumor growth and propagation of the disease. Use of peptides that can directly target cancer cells without affecting normal cells (targeted therapy) is evolving as an alternate strategy to conventional chemotherapy. Peptide can be utilized directly as a cytotoxic agent through various mechanisms or can act as a carrier of cytotoxic agents and radioisotopes by specifically targeting cancer cells. Peptide-based hormonal therapy has been extensively studied and utilized for the treatment of breast and prostate cancers. Tremendous amount of clinical data is currently available attesting to the efficiency of peptide-based cancer vaccines. Combination therapy is emerging as an important strategy to achieve synergistic effects in fighting cancer as a single method alone may not be efficient enough to yield positive results. Combining immunotherapy with conventional therapies such as radiation and chemotherapy or combining an anticancer peptide with a nonpeptidic cytotoxic drug is an example of this emerging field.

No MeSH data available.


Related in: MedlinePlus