Limits...
Two novel species of Aspergillus section Nigri from indoor air.

Jurjević Z, Peterson SW, Stea G, Solfrizzo M, Varga J, Hubka V, Perrone G - IMA Fungus (2012)

Bottom Line: Aspergillus brunneoviolaceus (syn.A. fijiensis) and A. uvarum are reported for the first time from the USA and from the indoor air environment.The newly described species do not produce ochratoxin A.

View Article: PubMed Central - PubMed

Affiliation: EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, New Jersey 08077 USA;

ABSTRACT
Aspergillus floridensis and A. trinidadensis spp. nov. are described as novel uniseriate species of Aspergillus section Nigri isolated from air samples. To describe the species we used phenotypes from 7-d Czapek yeast extract agar culture (CYA), creatine agar culture (CREA) and malt extract agar culture (MEA), with support by molecular analysis of the β-tubulin, calmodulin, RNA polymerase II (RPB2), and translation elongation factor-alpha (TEF) gene amplified and sequenced from 56 air isolates and one isolate from almonds belonging to Aspergillus sectionNigri.Aspergillus floridensis is closely related to A. aculeatus, and A. trinidadensis is closely related to A. aculeatinus. Aspergillus brunneoviolaceus (syn. A. fijiensis) and A. uvarum are reported for the first time from the USA and from the indoor air environment. The newly described species do not produce ochratoxin A.

No MeSH data available.


Maximum parsimony phylogram derived from the combined sequence data of four loci (CaM, benA, RPB2 and TEF) of 57 strains of uniseriate black Aspergillus, 28 reference strains of Aspergillus section Nigri, and A. flavus (ITEM 7526) as outgroup. Numbers at nodes are bootstrap values/Bayesian posterior probabilities. A dash indicates the support for the branch was < 70 % BP or < 0.80 PP.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3539319&req=5

Figure 2: Maximum parsimony phylogram derived from the combined sequence data of four loci (CaM, benA, RPB2 and TEF) of 57 strains of uniseriate black Aspergillus, 28 reference strains of Aspergillus section Nigri, and A. flavus (ITEM 7526) as outgroup. Numbers at nodes are bootstrap values/Bayesian posterior probabilities. A dash indicates the support for the branch was < 70 % BP or < 0.80 PP.

Mentions: Bayesian inference analysis of the multilocus (benA, CaM, TEF-1α, RPB2) data set produced a phylogenetic tree (log likelihood 14835.94) with high PP values for the same monophyletic group obtained with Maximum Likelihood analysis, the atypical A. aculeatus isolate ITEM 4760 clustered together with ITEM 14873, while the two other atypical A. aculeatus isolates were placed in the A. brunneoviolaceus clade. The results obtained by the Maximum Parsimony analysis are represented by one of the 80 equally most parsimonious trees (Fig. 2). The consistency index is (0.491302), the retention index is (0.863662), and the composite index is 0.466789 (0.424319) for all sites and parsimony-informative sites (in parentheses). The MP phylogenetic analysis agreed with the evolutionary results obtained by the ML and Bayesian analysis. A. violaceofuscus, A. brunneoviolaceus and A. uvarum are the principal black aspergilli “uniseriate” species collected in these indoor air samples with the identification of two possible new species (ITEM 14821 and 14783). The topology of MP, Bayesian phylogenetic trees is concordant, and the two trees are represented together in Fig. 2. The phylogenetic tree obtained by ML analysis has also the same topology of the other two phylogenetic analyses with some minor exception regarding the clades of A. ellipticus and A. heteromorphus (Fig. 1). All three phylogenetic analyses performed give evidence with high bootstrap that the two new species belong to different monophyletic groups (Figs 1–2), and that the atypical strain (ITEM 15297) belongs to the A. brunneoviolaceus clade, and that ITEM 4760 needs further characterization as belonging alone in a clade close to the new species A. floridensis but with no high supported bootstrap (Figs 1–2).


Two novel species of Aspergillus section Nigri from indoor air.

Jurjević Z, Peterson SW, Stea G, Solfrizzo M, Varga J, Hubka V, Perrone G - IMA Fungus (2012)

Maximum parsimony phylogram derived from the combined sequence data of four loci (CaM, benA, RPB2 and TEF) of 57 strains of uniseriate black Aspergillus, 28 reference strains of Aspergillus section Nigri, and A. flavus (ITEM 7526) as outgroup. Numbers at nodes are bootstrap values/Bayesian posterior probabilities. A dash indicates the support for the branch was < 70 % BP or < 0.80 PP.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3539319&req=5

Figure 2: Maximum parsimony phylogram derived from the combined sequence data of four loci (CaM, benA, RPB2 and TEF) of 57 strains of uniseriate black Aspergillus, 28 reference strains of Aspergillus section Nigri, and A. flavus (ITEM 7526) as outgroup. Numbers at nodes are bootstrap values/Bayesian posterior probabilities. A dash indicates the support for the branch was < 70 % BP or < 0.80 PP.
Mentions: Bayesian inference analysis of the multilocus (benA, CaM, TEF-1α, RPB2) data set produced a phylogenetic tree (log likelihood 14835.94) with high PP values for the same monophyletic group obtained with Maximum Likelihood analysis, the atypical A. aculeatus isolate ITEM 4760 clustered together with ITEM 14873, while the two other atypical A. aculeatus isolates were placed in the A. brunneoviolaceus clade. The results obtained by the Maximum Parsimony analysis are represented by one of the 80 equally most parsimonious trees (Fig. 2). The consistency index is (0.491302), the retention index is (0.863662), and the composite index is 0.466789 (0.424319) for all sites and parsimony-informative sites (in parentheses). The MP phylogenetic analysis agreed with the evolutionary results obtained by the ML and Bayesian analysis. A. violaceofuscus, A. brunneoviolaceus and A. uvarum are the principal black aspergilli “uniseriate” species collected in these indoor air samples with the identification of two possible new species (ITEM 14821 and 14783). The topology of MP, Bayesian phylogenetic trees is concordant, and the two trees are represented together in Fig. 2. The phylogenetic tree obtained by ML analysis has also the same topology of the other two phylogenetic analyses with some minor exception regarding the clades of A. ellipticus and A. heteromorphus (Fig. 1). All three phylogenetic analyses performed give evidence with high bootstrap that the two new species belong to different monophyletic groups (Figs 1–2), and that the atypical strain (ITEM 15297) belongs to the A. brunneoviolaceus clade, and that ITEM 4760 needs further characterization as belonging alone in a clade close to the new species A. floridensis but with no high supported bootstrap (Figs 1–2).

Bottom Line: Aspergillus brunneoviolaceus (syn.A. fijiensis) and A. uvarum are reported for the first time from the USA and from the indoor air environment.The newly described species do not produce ochratoxin A.

View Article: PubMed Central - PubMed

Affiliation: EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, New Jersey 08077 USA;

ABSTRACT
Aspergillus floridensis and A. trinidadensis spp. nov. are described as novel uniseriate species of Aspergillus section Nigri isolated from air samples. To describe the species we used phenotypes from 7-d Czapek yeast extract agar culture (CYA), creatine agar culture (CREA) and malt extract agar culture (MEA), with support by molecular analysis of the β-tubulin, calmodulin, RNA polymerase II (RPB2), and translation elongation factor-alpha (TEF) gene amplified and sequenced from 56 air isolates and one isolate from almonds belonging to Aspergillus sectionNigri.Aspergillus floridensis is closely related to A. aculeatus, and A. trinidadensis is closely related to A. aculeatinus. Aspergillus brunneoviolaceus (syn. A. fijiensis) and A. uvarum are reported for the first time from the USA and from the indoor air environment. The newly described species do not produce ochratoxin A.

No MeSH data available.