Limits...
"SP-G", a putative new surfactant protein--tissue localization and 3D structure.

Rausch F, Schicht M, Paulsen F, Ngueya I, Bräuer L, Brandt W - PLoS ONE (2012)

Bottom Line: In this work, computational chemistry and molecular-biological methods were combined to localize and characterize SP-G.With the help of a protein structure model, specific antibodies were obtained which allowed the detection of SP-G not only on mRNA but also on protein level.This includes also the possibility of interactions with lipid systems and with that, a potential surface-regulatory feature of SP-G.

View Article: PubMed Central - PubMed

Affiliation: Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany.

ABSTRACT
Surfactant proteins (SP) are well known from human lung. These proteins assist the formation of a monolayer of surface-active phospholipids at the liquid-air interface of the alveolar lining, play a major role in lowering the surface tension of interfaces, and have functions in innate and adaptive immune defense. During recent years it became obvious that SPs are also part of other tissues and fluids such as tear fluid, gingiva, saliva, the nasolacrimal system, and kidney. Recently, a putative new surfactant protein (SFTA2 or SP-G) was identified, which has no sequence or structural identity to the already know surfactant proteins. In this work, computational chemistry and molecular-biological methods were combined to localize and characterize SP-G. With the help of a protein structure model, specific antibodies were obtained which allowed the detection of SP-G not only on mRNA but also on protein level. The localization of this protein in different human tissues, sequence based prediction tools for posttranslational modifications and molecular dynamic simulations reveal that SP-G has physicochemical properties similar to the already known surfactant proteins B and C. This includes also the possibility of interactions with lipid systems and with that, a potential surface-regulatory feature of SP-G. In conclusion, the results indicate SP-G as a new surfactant protein which represents an until now unknown surfactant protein class.

Show MeSH

Related in: MedlinePlus

Expression of specific SP-G mRNA amplification products.The following samples were used: A) lacrimal gland [1], eyelids [2], conjunctiva [3], cornea [4]; B) lung [1], eyelid [2], heart [3], kidney [4], testis [5], stomach [6], spleen [7], nasal mucosa [8], salivary gland [9], umbilical cord [10], trophoblast [11], liver [12]; (−) negative control without template cDNA and (+) positive control – plasmid DNA carrying the ORF for the respective SP-G. All RT-PCR analyses show cDNA amplification for the corresponding SP in comparison with β -actin.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3475697&req=5

pone-0047789-g005: Expression of specific SP-G mRNA amplification products.The following samples were used: A) lacrimal gland [1], eyelids [2], conjunctiva [3], cornea [4]; B) lung [1], eyelid [2], heart [3], kidney [4], testis [5], stomach [6], spleen [7], nasal mucosa [8], salivary gland [9], umbilical cord [10], trophoblast [11], liver [12]; (−) negative control without template cDNA and (+) positive control – plasmid DNA carrying the ORF for the respective SP-G. All RT-PCR analyses show cDNA amplification for the corresponding SP in comparison with β -actin.

Mentions: Tissue of the lacrimal gland, eyelids, conjunctiva and the cornea show presence of SP-G mRNA (Figure 5A). Tissue of lung, eyelids, heart, kidney, testis, umbilical cord and trophoblast show at least weak presence of SP-G mRNA (Figure 5B). In contrast, the tissues obtained from samples of stomach, spleen, nasal mucosa and salivary gland show no presence of SP-G mRNA. The ß-actin control PCR is positive for all samples (data not shown).


"SP-G", a putative new surfactant protein--tissue localization and 3D structure.

Rausch F, Schicht M, Paulsen F, Ngueya I, Bräuer L, Brandt W - PLoS ONE (2012)

Expression of specific SP-G mRNA amplification products.The following samples were used: A) lacrimal gland [1], eyelids [2], conjunctiva [3], cornea [4]; B) lung [1], eyelid [2], heart [3], kidney [4], testis [5], stomach [6], spleen [7], nasal mucosa [8], salivary gland [9], umbilical cord [10], trophoblast [11], liver [12]; (−) negative control without template cDNA and (+) positive control – plasmid DNA carrying the ORF for the respective SP-G. All RT-PCR analyses show cDNA amplification for the corresponding SP in comparison with β -actin.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3475697&req=5

pone-0047789-g005: Expression of specific SP-G mRNA amplification products.The following samples were used: A) lacrimal gland [1], eyelids [2], conjunctiva [3], cornea [4]; B) lung [1], eyelid [2], heart [3], kidney [4], testis [5], stomach [6], spleen [7], nasal mucosa [8], salivary gland [9], umbilical cord [10], trophoblast [11], liver [12]; (−) negative control without template cDNA and (+) positive control – plasmid DNA carrying the ORF for the respective SP-G. All RT-PCR analyses show cDNA amplification for the corresponding SP in comparison with β -actin.
Mentions: Tissue of the lacrimal gland, eyelids, conjunctiva and the cornea show presence of SP-G mRNA (Figure 5A). Tissue of lung, eyelids, heart, kidney, testis, umbilical cord and trophoblast show at least weak presence of SP-G mRNA (Figure 5B). In contrast, the tissues obtained from samples of stomach, spleen, nasal mucosa and salivary gland show no presence of SP-G mRNA. The ß-actin control PCR is positive for all samples (data not shown).

Bottom Line: In this work, computational chemistry and molecular-biological methods were combined to localize and characterize SP-G.With the help of a protein structure model, specific antibodies were obtained which allowed the detection of SP-G not only on mRNA but also on protein level.This includes also the possibility of interactions with lipid systems and with that, a potential surface-regulatory feature of SP-G.

View Article: PubMed Central - PubMed

Affiliation: Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany.

ABSTRACT
Surfactant proteins (SP) are well known from human lung. These proteins assist the formation of a monolayer of surface-active phospholipids at the liquid-air interface of the alveolar lining, play a major role in lowering the surface tension of interfaces, and have functions in innate and adaptive immune defense. During recent years it became obvious that SPs are also part of other tissues and fluids such as tear fluid, gingiva, saliva, the nasolacrimal system, and kidney. Recently, a putative new surfactant protein (SFTA2 or SP-G) was identified, which has no sequence or structural identity to the already know surfactant proteins. In this work, computational chemistry and molecular-biological methods were combined to localize and characterize SP-G. With the help of a protein structure model, specific antibodies were obtained which allowed the detection of SP-G not only on mRNA but also on protein level. The localization of this protein in different human tissues, sequence based prediction tools for posttranslational modifications and molecular dynamic simulations reveal that SP-G has physicochemical properties similar to the already known surfactant proteins B and C. This includes also the possibility of interactions with lipid systems and with that, a potential surface-regulatory feature of SP-G. In conclusion, the results indicate SP-G as a new surfactant protein which represents an until now unknown surfactant protein class.

Show MeSH
Related in: MedlinePlus