Limits...
Evidence for transcriptional factor dysregulation in the dorsal raphe nucleus of patients with major depressive disorder.

Kerman IA, Bernard R, Bunney WE, Jones EG, Schatzberg AF, Myers RM, Barchas JD, Akil H, Watson SJ, Thompson RC - Front Neurosci (2012)

Bottom Line: Extracted RNA was prepared for gene expression profiling, and subsequent confirmation of select targets with quantitative real-time PCR.These observations indicate altered function of several transcriptional regulators and their downstream targets, which may lead to the dysregulation of multiple cellular functions that contribute to the pathophysiology of MDD.Future studies will require single cell analyses in the DR to determine potential impact of these changes on its cellular functions and related circuits.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA.

ABSTRACT
Extensive evidence implicates dysfunction in serotonin (5-HT) signaling in the etiology of major depressive disorder (MDD). Dorsal raphe nucleus (DR) is a major source of serotonin in the brain, and previous studies have reported within it alterations in 5-HT-related gene expression, protein levels, receptor binding, and morphological organization in mood disorders. In the present study, we utilized in situ hybridization-guided laser capture microdissection to harvest tissue samples from the middle-caudal subregion of the human DR post-mortem from MDD patients and from psychiatrically normal comparison subjects. Extracted RNA was prepared for gene expression profiling, and subsequent confirmation of select targets with quantitative real-time PCR. Our data indicate expression changes in functional gene families that regulate: (1) cellular stress and energy balance, (2) intracellular signaling and transcriptional regulation, and (3) cell proliferation and connectivity. The greatest changes in expression were observed among transcriptional regulators, including downregulation in the expression of TOB1, EGR1, and NR4A2 and their downstream targets. Previous studies have implicated these gene products in the regulation of functional domains impacted by MDD, including cognitive function, affective regulation, and emotional memory formation. These observations indicate altered function of several transcriptional regulators and their downstream targets, which may lead to the dysregulation of multiple cellular functions that contribute to the pathophysiology of MDD. Future studies will require single cell analyses in the DR to determine potential impact of these changes on its cellular functions and related circuits.

No MeSH data available.


Related in: MedlinePlus

In situ hybridizations for EGR1, ADM, and NR4A2. Tissue was processed for radioactive ISHs as previously described (Lopez-Figueroa et al., 2004; Bernard et al., 2009), using the following probes: EGR1, accession # NM_001964, pos. 857–1495; ADM, accession # NM_001124, pos. 701–1349; NR4A2, accession # NM_NM 173173, pos. 344–669. Binding with antisense (left column) and sense (right column) riboprobes is illustrated to compare specific and non-specific binding. Arrows indicate location of the dorsal raphe; compare to signal in Figures 1I–L. Note the presence of specific signal that is enriched within the DR in the antisense images, but is absent in the sense ones.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3475304&req=5

Figure 4: In situ hybridizations for EGR1, ADM, and NR4A2. Tissue was processed for radioactive ISHs as previously described (Lopez-Figueroa et al., 2004; Bernard et al., 2009), using the following probes: EGR1, accession # NM_001964, pos. 857–1495; ADM, accession # NM_001124, pos. 701–1349; NR4A2, accession # NM_NM 173173, pos. 344–669. Binding with antisense (left column) and sense (right column) riboprobes is illustrated to compare specific and non-specific binding. Arrows indicate location of the dorsal raphe; compare to signal in Figures 1I–L. Note the presence of specific signal that is enriched within the DR in the antisense images, but is absent in the sense ones.

Mentions: To determine the pattern of expression within the DR of EGR1, NR4A2, and ADM (a downstream target of NR4A2), we performed ISH in three of the control subjects on tissue sections that contained the middle-caudal DR (Figure 4). These genes were widely expressed at relatively low levels, as is true of other transcriptional regulators (Kerman et al., 2012). These ISH data suggest that EGR1, NR4A2, and ADM are expressed within a variety of cell types, but are enriched in their expression within the DR (Figure 4). Based on this hybridization pattern, it is likely that these genes impact a wide variety of cellular functions and neuronal circuits.


Evidence for transcriptional factor dysregulation in the dorsal raphe nucleus of patients with major depressive disorder.

Kerman IA, Bernard R, Bunney WE, Jones EG, Schatzberg AF, Myers RM, Barchas JD, Akil H, Watson SJ, Thompson RC - Front Neurosci (2012)

In situ hybridizations for EGR1, ADM, and NR4A2. Tissue was processed for radioactive ISHs as previously described (Lopez-Figueroa et al., 2004; Bernard et al., 2009), using the following probes: EGR1, accession # NM_001964, pos. 857–1495; ADM, accession # NM_001124, pos. 701–1349; NR4A2, accession # NM_NM 173173, pos. 344–669. Binding with antisense (left column) and sense (right column) riboprobes is illustrated to compare specific and non-specific binding. Arrows indicate location of the dorsal raphe; compare to signal in Figures 1I–L. Note the presence of specific signal that is enriched within the DR in the antisense images, but is absent in the sense ones.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3475304&req=5

Figure 4: In situ hybridizations for EGR1, ADM, and NR4A2. Tissue was processed for radioactive ISHs as previously described (Lopez-Figueroa et al., 2004; Bernard et al., 2009), using the following probes: EGR1, accession # NM_001964, pos. 857–1495; ADM, accession # NM_001124, pos. 701–1349; NR4A2, accession # NM_NM 173173, pos. 344–669. Binding with antisense (left column) and sense (right column) riboprobes is illustrated to compare specific and non-specific binding. Arrows indicate location of the dorsal raphe; compare to signal in Figures 1I–L. Note the presence of specific signal that is enriched within the DR in the antisense images, but is absent in the sense ones.
Mentions: To determine the pattern of expression within the DR of EGR1, NR4A2, and ADM (a downstream target of NR4A2), we performed ISH in three of the control subjects on tissue sections that contained the middle-caudal DR (Figure 4). These genes were widely expressed at relatively low levels, as is true of other transcriptional regulators (Kerman et al., 2012). These ISH data suggest that EGR1, NR4A2, and ADM are expressed within a variety of cell types, but are enriched in their expression within the DR (Figure 4). Based on this hybridization pattern, it is likely that these genes impact a wide variety of cellular functions and neuronal circuits.

Bottom Line: Extracted RNA was prepared for gene expression profiling, and subsequent confirmation of select targets with quantitative real-time PCR.These observations indicate altered function of several transcriptional regulators and their downstream targets, which may lead to the dysregulation of multiple cellular functions that contribute to the pathophysiology of MDD.Future studies will require single cell analyses in the DR to determine potential impact of these changes on its cellular functions and related circuits.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA.

ABSTRACT
Extensive evidence implicates dysfunction in serotonin (5-HT) signaling in the etiology of major depressive disorder (MDD). Dorsal raphe nucleus (DR) is a major source of serotonin in the brain, and previous studies have reported within it alterations in 5-HT-related gene expression, protein levels, receptor binding, and morphological organization in mood disorders. In the present study, we utilized in situ hybridization-guided laser capture microdissection to harvest tissue samples from the middle-caudal subregion of the human DR post-mortem from MDD patients and from psychiatrically normal comparison subjects. Extracted RNA was prepared for gene expression profiling, and subsequent confirmation of select targets with quantitative real-time PCR. Our data indicate expression changes in functional gene families that regulate: (1) cellular stress and energy balance, (2) intracellular signaling and transcriptional regulation, and (3) cell proliferation and connectivity. The greatest changes in expression were observed among transcriptional regulators, including downregulation in the expression of TOB1, EGR1, and NR4A2 and their downstream targets. Previous studies have implicated these gene products in the regulation of functional domains impacted by MDD, including cognitive function, affective regulation, and emotional memory formation. These observations indicate altered function of several transcriptional regulators and their downstream targets, which may lead to the dysregulation of multiple cellular functions that contribute to the pathophysiology of MDD. Future studies will require single cell analyses in the DR to determine potential impact of these changes on its cellular functions and related circuits.

No MeSH data available.


Related in: MedlinePlus