Limits...
A novel image encryption algorithm based on DNA subsequence operation.

Zhang Q, Xue X, Wei X - ScientificWorldJournal (2012)

Bottom Line: We present a novel image encryption algorithm based on DNA subsequence operation.Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc.) combining with the logistic chaotic map to scramble the location and the value of pixel points from the image.The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education of Dalian University, Dalian 116622, China. zhangq30@yahoo.com

ABSTRACT
We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc.) combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack.

Show MeSH
Correlation of two horizontally adjacent pixels in the original image and in the encrypted image.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3475302&req=5

fig6: Correlation of two horizontally adjacent pixels in the original image and in the encrypted image.

Mentions: Figures 6(a) and 6(b) show the correlation of two horizontally adjacent pixels in the original image and that in the encrypted image, where the correlation coefficients are 0.9432 and 0.1366, respectively. Other results are shown in Table 1. From Figure 6(b) and Table 1, we can see that the correlation coefficient of the adjacent pixels in encrypted image is low, which is close to 0. It follows from Figure 6(b) and Table 1 that the proposed image encryption algorithm has strong ability of resisting statistical attack.


A novel image encryption algorithm based on DNA subsequence operation.

Zhang Q, Xue X, Wei X - ScientificWorldJournal (2012)

Correlation of two horizontally adjacent pixels in the original image and in the encrypted image.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3475302&req=5

fig6: Correlation of two horizontally adjacent pixels in the original image and in the encrypted image.
Mentions: Figures 6(a) and 6(b) show the correlation of two horizontally adjacent pixels in the original image and that in the encrypted image, where the correlation coefficients are 0.9432 and 0.1366, respectively. Other results are shown in Table 1. From Figure 6(b) and Table 1, we can see that the correlation coefficient of the adjacent pixels in encrypted image is low, which is close to 0. It follows from Figure 6(b) and Table 1 that the proposed image encryption algorithm has strong ability of resisting statistical attack.

Bottom Line: We present a novel image encryption algorithm based on DNA subsequence operation.Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc.) combining with the logistic chaotic map to scramble the location and the value of pixel points from the image.The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education of Dalian University, Dalian 116622, China. zhangq30@yahoo.com

ABSTRACT
We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc.) combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack.

Show MeSH