Limits...
Antiproliferative activity of fucan nanogel.

Dantas-Santos N, Almeida-Lima J, Vidal AA, Gomes DL, Oliveira RM, Santos Pedrosa S, Pereira P, Gama FM, Oliveira Rocha HA - Mar Drugs (2012)

Bottom Line: The resulting modified material (SNFuc) formed nanosized particles.On the other hand, nanogel improved Chinese hamster ovary (CHO) and monocyte macrophage cell (RAW) non-tumor cell line proliferation in the same concentration range.The antiproliferative effect against tumor cells was also confirmed using the BrdU test.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Biotechnology of Natural Polymers (BIOPOL), Departament of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59078-970, Brazil. nednaldod@hotmail.com

ABSTRACT
Sulfated fucans comprise families of polydisperse natural polysaccharides based on sulfated L-fucose. Our aim was to investigate whether fucan nanogel induces cell-specific responses. To that end, a non toxic fucan extracted from Spatoglossum schröederi was chemically modified by grafting hexadecylamine to the polymer hydrophilic backbone. The resulting modified material (SNFuc) formed nanosized particles. The degree of substitution with hydrophobic chains was close to 100%, as estimated by elemental analysis. SNFfuc in aqueous media had a mean diameter of 123 nm and zeta potential of -38.3 ± 0.74 mV, as measured by dynamic light scattering. Nanoparticles conserved their size for up to 70 days. SNFuc cytotoxicity was determined using the MTT assay after culturing different cell lines for 24 h. Tumor-cell (HepG2, 786, H-S5) proliferation was inhibited by 2.0%-43.7% at nanogel concentrations of 0.05-0.5 mg/mL and rabbit aorta endothelial cells (RAEC) non-tumor cell line proliferation displayed inhibition of 8.0%-22.0%. On the other hand, nanogel improved Chinese hamster ovary (CHO) and monocyte macrophage cell (RAW) non-tumor cell line proliferation in the same concentration range. The antiproliferative effect against tumor cells was also confirmed using the BrdU test. Flow cytometric analysis revealed that the fucan nanogel inhibited 786 cell proliferation through caspase and caspase-independent mechanisms. In addition, SNFuc blocks 786 cell passages in the S and G2-M phases of the cell cycle.

Show MeSH

Related in: MedlinePlus

Evaluation of cell-cycle arrest after exposure to SNFuc. After 24 h of treatment with SNFuc (0.5 mg/mL), 786 cells were fixed, treated with RNase, stained with PI and analyzed by flow cytometry to assess cell cycle distribution. Control cells without SNFuc. Cell cycle arrest data were analyzed using FlowJo software v. 7.6.3. Similar results were obtained in three independent experiments. Different letters indicate a significant difference between concentrations of individual sulfated polysaccharides (a and b, p < 0.001; a′ and b′, p < 0.05).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3475269&req=5

marinedrugs-10-02002-f010: Evaluation of cell-cycle arrest after exposure to SNFuc. After 24 h of treatment with SNFuc (0.5 mg/mL), 786 cells were fixed, treated with RNase, stained with PI and analyzed by flow cytometry to assess cell cycle distribution. Control cells without SNFuc. Cell cycle arrest data were analyzed using FlowJo software v. 7.6.3. Similar results were obtained in three independent experiments. Different letters indicate a significant difference between concentrations of individual sulfated polysaccharides (a and b, p < 0.001; a′ and b′, p < 0.05).

Mentions: Analysis of the cell cycle after treatment of 786 cells with the SNFuc showed that, during incubation in the nanogel, the proportion of G0/G1 phase cells was reduced (Figure 10), and the percentage of cells at the S and G2/M phases of the cell cycle grew. This was accompanied by the appearance of a large number of apoptotic cells in the sub-G0/G1 phase. Data indicate that cells in the G1 phase during incubation entered the subsequent phase and stopped at this point. If cells entered apoptosis from the G1 phase, there was no accumulation of cells in S and G2/M phases.


Antiproliferative activity of fucan nanogel.

Dantas-Santos N, Almeida-Lima J, Vidal AA, Gomes DL, Oliveira RM, Santos Pedrosa S, Pereira P, Gama FM, Oliveira Rocha HA - Mar Drugs (2012)

Evaluation of cell-cycle arrest after exposure to SNFuc. After 24 h of treatment with SNFuc (0.5 mg/mL), 786 cells were fixed, treated with RNase, stained with PI and analyzed by flow cytometry to assess cell cycle distribution. Control cells without SNFuc. Cell cycle arrest data were analyzed using FlowJo software v. 7.6.3. Similar results were obtained in three independent experiments. Different letters indicate a significant difference between concentrations of individual sulfated polysaccharides (a and b, p < 0.001; a′ and b′, p < 0.05).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3475269&req=5

marinedrugs-10-02002-f010: Evaluation of cell-cycle arrest after exposure to SNFuc. After 24 h of treatment with SNFuc (0.5 mg/mL), 786 cells were fixed, treated with RNase, stained with PI and analyzed by flow cytometry to assess cell cycle distribution. Control cells without SNFuc. Cell cycle arrest data were analyzed using FlowJo software v. 7.6.3. Similar results were obtained in three independent experiments. Different letters indicate a significant difference between concentrations of individual sulfated polysaccharides (a and b, p < 0.001; a′ and b′, p < 0.05).
Mentions: Analysis of the cell cycle after treatment of 786 cells with the SNFuc showed that, during incubation in the nanogel, the proportion of G0/G1 phase cells was reduced (Figure 10), and the percentage of cells at the S and G2/M phases of the cell cycle grew. This was accompanied by the appearance of a large number of apoptotic cells in the sub-G0/G1 phase. Data indicate that cells in the G1 phase during incubation entered the subsequent phase and stopped at this point. If cells entered apoptosis from the G1 phase, there was no accumulation of cells in S and G2/M phases.

Bottom Line: The resulting modified material (SNFuc) formed nanosized particles.On the other hand, nanogel improved Chinese hamster ovary (CHO) and monocyte macrophage cell (RAW) non-tumor cell line proliferation in the same concentration range.The antiproliferative effect against tumor cells was also confirmed using the BrdU test.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Biotechnology of Natural Polymers (BIOPOL), Departament of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59078-970, Brazil. nednaldod@hotmail.com

ABSTRACT
Sulfated fucans comprise families of polydisperse natural polysaccharides based on sulfated L-fucose. Our aim was to investigate whether fucan nanogel induces cell-specific responses. To that end, a non toxic fucan extracted from Spatoglossum schröederi was chemically modified by grafting hexadecylamine to the polymer hydrophilic backbone. The resulting modified material (SNFuc) formed nanosized particles. The degree of substitution with hydrophobic chains was close to 100%, as estimated by elemental analysis. SNFfuc in aqueous media had a mean diameter of 123 nm and zeta potential of -38.3 ± 0.74 mV, as measured by dynamic light scattering. Nanoparticles conserved their size for up to 70 days. SNFuc cytotoxicity was determined using the MTT assay after culturing different cell lines for 24 h. Tumor-cell (HepG2, 786, H-S5) proliferation was inhibited by 2.0%-43.7% at nanogel concentrations of 0.05-0.5 mg/mL and rabbit aorta endothelial cells (RAEC) non-tumor cell line proliferation displayed inhibition of 8.0%-22.0%. On the other hand, nanogel improved Chinese hamster ovary (CHO) and monocyte macrophage cell (RAW) non-tumor cell line proliferation in the same concentration range. The antiproliferative effect against tumor cells was also confirmed using the BrdU test. Flow cytometric analysis revealed that the fucan nanogel inhibited 786 cell proliferation through caspase and caspase-independent mechanisms. In addition, SNFuc blocks 786 cell passages in the S and G2-M phases of the cell cycle.

Show MeSH
Related in: MedlinePlus