Limits...
Antiproliferative activity of fucan nanogel.

Dantas-Santos N, Almeida-Lima J, Vidal AA, Gomes DL, Oliveira RM, Santos Pedrosa S, Pereira P, Gama FM, Oliveira Rocha HA - Mar Drugs (2012)

Bottom Line: The resulting modified material (SNFuc) formed nanosized particles.On the other hand, nanogel improved Chinese hamster ovary (CHO) and monocyte macrophage cell (RAW) non-tumor cell line proliferation in the same concentration range.The antiproliferative effect against tumor cells was also confirmed using the BrdU test.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Biotechnology of Natural Polymers (BIOPOL), Departament of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59078-970, Brazil. nednaldod@hotmail.com

ABSTRACT
Sulfated fucans comprise families of polydisperse natural polysaccharides based on sulfated L-fucose. Our aim was to investigate whether fucan nanogel induces cell-specific responses. To that end, a non toxic fucan extracted from Spatoglossum schröederi was chemically modified by grafting hexadecylamine to the polymer hydrophilic backbone. The resulting modified material (SNFuc) formed nanosized particles. The degree of substitution with hydrophobic chains was close to 100%, as estimated by elemental analysis. SNFfuc in aqueous media had a mean diameter of 123 nm and zeta potential of -38.3 ± 0.74 mV, as measured by dynamic light scattering. Nanoparticles conserved their size for up to 70 days. SNFuc cytotoxicity was determined using the MTT assay after culturing different cell lines for 24 h. Tumor-cell (HepG2, 786, H-S5) proliferation was inhibited by 2.0%-43.7% at nanogel concentrations of 0.05-0.5 mg/mL and rabbit aorta endothelial cells (RAEC) non-tumor cell line proliferation displayed inhibition of 8.0%-22.0%. On the other hand, nanogel improved Chinese hamster ovary (CHO) and monocyte macrophage cell (RAW) non-tumor cell line proliferation in the same concentration range. The antiproliferative effect against tumor cells was also confirmed using the BrdU test. Flow cytometric analysis revealed that the fucan nanogel inhibited 786 cell proliferation through caspase and caspase-independent mechanisms. In addition, SNFuc blocks 786 cell passages in the S and G2-M phases of the cell cycle.

Show MeSH

Related in: MedlinePlus

Particle size distribution (A) and volume (%) (B) of SNFuc nanogels (0.1 g/dL) measured by dynamic light scattering (DLS) and Fucan nanogels observed by Cryo-SEM (C). The figures represent data obtained from the determination of fucan nanoparticle properties prepared in three different experiments; (D) Colloidal stability of nanoparticles in water. The SNFuc solution (0.1 g/dL) was stored at 25 °C for up to 70 days. The error bar represents standard deviation (n = 5).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3475269&req=5

marinedrugs-10-02002-f004: Particle size distribution (A) and volume (%) (B) of SNFuc nanogels (0.1 g/dL) measured by dynamic light scattering (DLS) and Fucan nanogels observed by Cryo-SEM (C). The figures represent data obtained from the determination of fucan nanoparticle properties prepared in three different experiments; (D) Colloidal stability of nanoparticles in water. The SNFuc solution (0.1 g/dL) was stored at 25 °C for up to 70 days. The error bar represents standard deviation (n = 5).

Mentions: DLS analysis provides valuable information on the homogeneity of dispersion. SNFuc (0.1 g/dL) in aqueous media had a mean diameter of 123 nm, with unimodal size distribution and a corresponding average polydispersity index of 0.269 (Figure 4A). Since size distribution intensity is somewhat influenced by the presence of larger particles, whereas volume distribution better characterizes the more representative population, we also analyzed the volume distribution of nanoparticles. SNFuc volume analysis also demonstrated the homogeneity of nanoparticles (Figure 4B). The observation of the nanogel by CryoSEM provides images of particles in the same size range as detected by DLS (Figure 4D).


Antiproliferative activity of fucan nanogel.

Dantas-Santos N, Almeida-Lima J, Vidal AA, Gomes DL, Oliveira RM, Santos Pedrosa S, Pereira P, Gama FM, Oliveira Rocha HA - Mar Drugs (2012)

Particle size distribution (A) and volume (%) (B) of SNFuc nanogels (0.1 g/dL) measured by dynamic light scattering (DLS) and Fucan nanogels observed by Cryo-SEM (C). The figures represent data obtained from the determination of fucan nanoparticle properties prepared in three different experiments; (D) Colloidal stability of nanoparticles in water. The SNFuc solution (0.1 g/dL) was stored at 25 °C for up to 70 days. The error bar represents standard deviation (n = 5).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3475269&req=5

marinedrugs-10-02002-f004: Particle size distribution (A) and volume (%) (B) of SNFuc nanogels (0.1 g/dL) measured by dynamic light scattering (DLS) and Fucan nanogels observed by Cryo-SEM (C). The figures represent data obtained from the determination of fucan nanoparticle properties prepared in three different experiments; (D) Colloidal stability of nanoparticles in water. The SNFuc solution (0.1 g/dL) was stored at 25 °C for up to 70 days. The error bar represents standard deviation (n = 5).
Mentions: DLS analysis provides valuable information on the homogeneity of dispersion. SNFuc (0.1 g/dL) in aqueous media had a mean diameter of 123 nm, with unimodal size distribution and a corresponding average polydispersity index of 0.269 (Figure 4A). Since size distribution intensity is somewhat influenced by the presence of larger particles, whereas volume distribution better characterizes the more representative population, we also analyzed the volume distribution of nanoparticles. SNFuc volume analysis also demonstrated the homogeneity of nanoparticles (Figure 4B). The observation of the nanogel by CryoSEM provides images of particles in the same size range as detected by DLS (Figure 4D).

Bottom Line: The resulting modified material (SNFuc) formed nanosized particles.On the other hand, nanogel improved Chinese hamster ovary (CHO) and monocyte macrophage cell (RAW) non-tumor cell line proliferation in the same concentration range.The antiproliferative effect against tumor cells was also confirmed using the BrdU test.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Biotechnology of Natural Polymers (BIOPOL), Departament of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Natal-RN 59078-970, Brazil. nednaldod@hotmail.com

ABSTRACT
Sulfated fucans comprise families of polydisperse natural polysaccharides based on sulfated L-fucose. Our aim was to investigate whether fucan nanogel induces cell-specific responses. To that end, a non toxic fucan extracted from Spatoglossum schröederi was chemically modified by grafting hexadecylamine to the polymer hydrophilic backbone. The resulting modified material (SNFuc) formed nanosized particles. The degree of substitution with hydrophobic chains was close to 100%, as estimated by elemental analysis. SNFfuc in aqueous media had a mean diameter of 123 nm and zeta potential of -38.3 ± 0.74 mV, as measured by dynamic light scattering. Nanoparticles conserved their size for up to 70 days. SNFuc cytotoxicity was determined using the MTT assay after culturing different cell lines for 24 h. Tumor-cell (HepG2, 786, H-S5) proliferation was inhibited by 2.0%-43.7% at nanogel concentrations of 0.05-0.5 mg/mL and rabbit aorta endothelial cells (RAEC) non-tumor cell line proliferation displayed inhibition of 8.0%-22.0%. On the other hand, nanogel improved Chinese hamster ovary (CHO) and monocyte macrophage cell (RAW) non-tumor cell line proliferation in the same concentration range. The antiproliferative effect against tumor cells was also confirmed using the BrdU test. Flow cytometric analysis revealed that the fucan nanogel inhibited 786 cell proliferation through caspase and caspase-independent mechanisms. In addition, SNFuc blocks 786 cell passages in the S and G2-M phases of the cell cycle.

Show MeSH
Related in: MedlinePlus