Limits...
Antinociceptive and anti-inflammatory activities of crude methanolic extract of red alga Bryothamnion triquetrum.

Cavalcante-Silva LH, da Matta CB, de Araújo MV, Barbosa-Filho JM, de Lira DP, de Oliveira Santos BV, de Miranda GE, Alexandre-Moreira MS - Mar Drugs (2012)

Bottom Line: While BT-MeOH did not inhibit the neurogenic phase in formalin-induced nociception, the inflammatory phase was inhibited by 53.1% (66.8 ± 14.2 s; p < 0.01).Based on the results obtained in this study, we conclude that BT-MeOH has peripheral antinociceptive and anti-inflammatory activities.However, more studies need to be conducted to confirm these properties.

View Article: PubMed Central - PubMed

Affiliation: LaFI-Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió 57020-720, AL, Brazil. luiz0710@gmail.com

ABSTRACT
The marine environment is an extraordinary reservoir of bioactive natural products, many of which exhibit chemical and structural features not found in terrestrial natural products. In this regard, the aim of this study was to investigate the possible antinociceptive and anti-inflammatory activities of a crude methanolic extract of the red alga Bryothamnion triquetrum (BT-MeOH) in murine models. Groups of Swiss mice of both sexes (25-30 g) were used throughout the experiments. The potential antinociceptive of BT-MeOH was evaluated by means of the following tests: acetic acid-induced writhing, hot-plate test and glutamate- and formalin-induced nociception. The anti-inflammatory activity of BT-MeOH was investigated using the zymosan A-induced peritonitis test. The tests were conducted using 100 mg/kg (p.o.) BT-MeOH, 33.3 mg/kg (p.o.) dipyrone, 35.7 mg/kg (p.o.) indomethacin and 5.7 mg/kg (s.c.) morphine. The extract and all standard drugs were administered 40 min before the nociceptive/inflammatory stimulus. In the acetic acid-induced writhing test, BT-MeOH and dipyrone inhibited the nociceptive response by 55.9% (22.2 ± 2.0 writhings; p < 0.01) and 80.9% (9.6 ± 2.1 writhings; p < 0.01). In the hot-plate test, BT-MeOH did not increase the latency time of the animals in the time evaluated. In addition, BT-MeOH inhibited glutamate-induced nociception by 50.1%. While BT-MeOH did not inhibit the neurogenic phase in formalin-induced nociception, the inflammatory phase was inhibited by 53.1% (66.8 ± 14.2 s; p < 0.01). Indomethacin inhibited the inflammatory phase by 60.2% (56.8 ± 8.7 s; p < 0.01). In the zymosan-induced peritonitis test, BT-MeOH inhibited 55.6% (6.6 ± 0.2 × 10(6) leukocytes/mL; p < 0.01) of leukocyte migration, while indomethacin inhibited 78.1% (3.2 ± 0.1 × 10(6) leukocytes/mL; p < 0.01). Based on the results obtained in this study, we conclude that BT-MeOH has peripheral antinociceptive and anti-inflammatory activities. However, more studies need to be conducted to confirm these properties.

Show MeSH

Related in: MedlinePlus

Time course of BT-MeOH (100 mg/kg, p.o.) and morphine (5.7 mg/kg, s.c.) on thermal nociception (hot plate). The results represent the mean ± S.E.M. of six animals. Statistical differences between the treated and control groups were evaluated by ANOVA and Dunnett’s test to assess the significance levels in comparison with zero-time. The asterisks denote the level of significance in comparison with zero-time, ** p < 0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3475267&req=5

marinedrugs-10-01977-f002: Time course of BT-MeOH (100 mg/kg, p.o.) and morphine (5.7 mg/kg, s.c.) on thermal nociception (hot plate). The results represent the mean ± S.E.M. of six animals. Statistical differences between the treated and control groups were evaluated by ANOVA and Dunnett’s test to assess the significance levels in comparison with zero-time. The asterisks denote the level of significance in comparison with zero-time, ** p < 0.01.

Mentions: Given that the writing test is sensitive to various drugs with a peripheral and central action [54,55,56,57], the hot-plate test was carried out to identify any possible central antinociceptive activity. The treatment with BT-MeOH did not increase the reaction latency time of mice on the hot plate, suggesting that BT-MeOH did not possess central antinociceptive activity. On the other hand, as expected, morphine induced a significant increase in the latency time of mice at all times evaluated (Figure 2). The hot-plate test has been used to evaluate nociceptive activity mediated by central mechanisms. The thermal stimulus induces two kinds of behavior: paw licking and jumping [58,59]. Both result from TRPV activation by heat. Once activated, this ion channel promotes Ca2+ influx, which depolarizes sensory fibers and induces voltage-dependent Na+ channel opening, triggering an action potential [50].


Antinociceptive and anti-inflammatory activities of crude methanolic extract of red alga Bryothamnion triquetrum.

Cavalcante-Silva LH, da Matta CB, de Araújo MV, Barbosa-Filho JM, de Lira DP, de Oliveira Santos BV, de Miranda GE, Alexandre-Moreira MS - Mar Drugs (2012)

Time course of BT-MeOH (100 mg/kg, p.o.) and morphine (5.7 mg/kg, s.c.) on thermal nociception (hot plate). The results represent the mean ± S.E.M. of six animals. Statistical differences between the treated and control groups were evaluated by ANOVA and Dunnett’s test to assess the significance levels in comparison with zero-time. The asterisks denote the level of significance in comparison with zero-time, ** p < 0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3475267&req=5

marinedrugs-10-01977-f002: Time course of BT-MeOH (100 mg/kg, p.o.) and morphine (5.7 mg/kg, s.c.) on thermal nociception (hot plate). The results represent the mean ± S.E.M. of six animals. Statistical differences between the treated and control groups were evaluated by ANOVA and Dunnett’s test to assess the significance levels in comparison with zero-time. The asterisks denote the level of significance in comparison with zero-time, ** p < 0.01.
Mentions: Given that the writing test is sensitive to various drugs with a peripheral and central action [54,55,56,57], the hot-plate test was carried out to identify any possible central antinociceptive activity. The treatment with BT-MeOH did not increase the reaction latency time of mice on the hot plate, suggesting that BT-MeOH did not possess central antinociceptive activity. On the other hand, as expected, morphine induced a significant increase in the latency time of mice at all times evaluated (Figure 2). The hot-plate test has been used to evaluate nociceptive activity mediated by central mechanisms. The thermal stimulus induces two kinds of behavior: paw licking and jumping [58,59]. Both result from TRPV activation by heat. Once activated, this ion channel promotes Ca2+ influx, which depolarizes sensory fibers and induces voltage-dependent Na+ channel opening, triggering an action potential [50].

Bottom Line: While BT-MeOH did not inhibit the neurogenic phase in formalin-induced nociception, the inflammatory phase was inhibited by 53.1% (66.8 ± 14.2 s; p < 0.01).Based on the results obtained in this study, we conclude that BT-MeOH has peripheral antinociceptive and anti-inflammatory activities.However, more studies need to be conducted to confirm these properties.

View Article: PubMed Central - PubMed

Affiliation: LaFI-Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió 57020-720, AL, Brazil. luiz0710@gmail.com

ABSTRACT
The marine environment is an extraordinary reservoir of bioactive natural products, many of which exhibit chemical and structural features not found in terrestrial natural products. In this regard, the aim of this study was to investigate the possible antinociceptive and anti-inflammatory activities of a crude methanolic extract of the red alga Bryothamnion triquetrum (BT-MeOH) in murine models. Groups of Swiss mice of both sexes (25-30 g) were used throughout the experiments. The potential antinociceptive of BT-MeOH was evaluated by means of the following tests: acetic acid-induced writhing, hot-plate test and glutamate- and formalin-induced nociception. The anti-inflammatory activity of BT-MeOH was investigated using the zymosan A-induced peritonitis test. The tests were conducted using 100 mg/kg (p.o.) BT-MeOH, 33.3 mg/kg (p.o.) dipyrone, 35.7 mg/kg (p.o.) indomethacin and 5.7 mg/kg (s.c.) morphine. The extract and all standard drugs were administered 40 min before the nociceptive/inflammatory stimulus. In the acetic acid-induced writhing test, BT-MeOH and dipyrone inhibited the nociceptive response by 55.9% (22.2 ± 2.0 writhings; p < 0.01) and 80.9% (9.6 ± 2.1 writhings; p < 0.01). In the hot-plate test, BT-MeOH did not increase the latency time of the animals in the time evaluated. In addition, BT-MeOH inhibited glutamate-induced nociception by 50.1%. While BT-MeOH did not inhibit the neurogenic phase in formalin-induced nociception, the inflammatory phase was inhibited by 53.1% (66.8 ± 14.2 s; p < 0.01). Indomethacin inhibited the inflammatory phase by 60.2% (56.8 ± 8.7 s; p < 0.01). In the zymosan-induced peritonitis test, BT-MeOH inhibited 55.6% (6.6 ± 0.2 × 10(6) leukocytes/mL; p < 0.01) of leukocyte migration, while indomethacin inhibited 78.1% (3.2 ± 0.1 × 10(6) leukocytes/mL; p < 0.01). Based on the results obtained in this study, we conclude that BT-MeOH has peripheral antinociceptive and anti-inflammatory activities. However, more studies need to be conducted to confirm these properties.

Show MeSH
Related in: MedlinePlus