Limits...
Polyunsaturated Fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications.

Pereira H, Barreira L, Figueiredo F, Custódio L, Vizetto-Duarte C, Polo C, Rešek E, Engelen A, Varela J - Mar Drugs (2012)

Bottom Line: The obtained data showed that rhodophytes and phaeophytes have higher concentrations of PUFA, particularly from the n-3 series, thereby being a better source of these compounds.Ulva was an exception within the Chlorophyta, as it presented high concentrations of n-3 PUFA, α-linolenic acid in particular.In conclusion, macroalgae can be considered as a potential source for large-scale production of essential PUFA with wide applications in the nutraceutical and pharmacological industries.

View Article: PubMed Central - PubMed

Affiliation: Centre of Marine Sciences, University of Algarve, Faro 8005-139, Portugal. hgpereira@ualg.pt

ABSTRACT
As mammals are unable to synthesize essential polyunsaturated fatty acids (PUFA), these compounds need to be taken in through diet. Nowadays, obtaining essential PUFA in diet is becoming increasingly difficult; therefore this work investigated the suitability of using macroalgae as novel dietary sources of PUFA. Hence, 17 macroalgal species from three different phyla (Chlorophyta, Phaeophyta and Rhodophyta) were analyzed and their fatty acid methyl esters (FAME) profile was assessed. Each phylum presented a characteristic fatty acid signature as evidenced by clustering of PUFA profiles of algae belonging to the same phylum in a Principal Components Analysis. The major PUFA detected in all phyla were C(18) and C(20), namely linoleic, arachidonic and eicosapentaenoic acids. The obtained data showed that rhodophytes and phaeophytes have higher concentrations of PUFA, particularly from the n-3 series, thereby being a better source of these compounds. Moreover, rhodophytes and phaeophytes presented "healthier" ∑n-6/∑n-3 and PUFA/saturated fatty acid ratios than chlorophytes. Ulva was an exception within the Chlorophyta, as it presented high concentrations of n-3 PUFA, α-linolenic acid in particular. In conclusion, macroalgae can be considered as a potential source for large-scale production of essential PUFA with wide applications in the nutraceutical and pharmacological industries.

Show MeSH
PCA of the fatty acid composition of macroalgae showing the data scores labeled by phylum. Green—Chlorophyta; Brown—Phaeophyta; Red—Rhodophyta.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3475264&req=5

marinedrugs-10-01920-f004: PCA of the fatty acid composition of macroalgae showing the data scores labeled by phylum. Green—Chlorophyta; Brown—Phaeophyta; Red—Rhodophyta.

Mentions: Principal Components Analysis (PCA) was performed on the 21 detected fatty acids as a proportion of total fatty acid content, to assess the relationship between the 17 strains belonging to the three different phyla. The levels of capric (C10:0), myristic, hexadecatrienoic (n-3 and n-6) and ALA were removed from the multivariate analysis due to their low variation, therefore promoting a more reliable analysis. The first two components explain 46.6% of the total variation, 26% for PC1 and 20.5% for PC2 (both significant). In the loading scatter plot of the variables (FA; Figure 3), AA, EPA, DHA, pentadecylic (C15:0), behenic (C22:0), lignoceric (C24:0) and hexadecadienoic (C16:2n-6) acids were the most discriminant variables along PC1, while palmitic (C16:0), oleic (C18:1n-9c), elaidic (C18:1n-9t) and dihomo-γ-linolenic (C20:3n-6) acids were the main discriminant FA along PC2. In this plot, FA are distributed according to their saturation: most SFA are placed on the upper quadrants while most PUFA grouped in the lower left quadrant. In the scores plot, species clustered according to their phylum (Figure 4), suggesting that each phylum has a distinct FA profile and supporting earlier evidence that lipid composition may be a biochemical marker for each taxonomic group [24,36,39]. Besides its evident application in phylogenic studies, this feature may help to assign different algae to distinct diets. In this sense, the placement of the rhodophytes and phaeophytes in the left quadrants, and of all chlorophytes in the right quadrants, indicate that the first two phyla display a lipid profile clearly enriched in pentadecylic, stearic, EPA, DHA, AA and eicosenoic (C20:1) acids. Within the Chlorophyta phylum, Codium strains are located further to the right due to their increased content in n-3 hexadecatrienoic (C16:3n-3), behenic (C22:0) and lignoceric (C24:0) acids. The Rhodophyta and Phaeophyta species are separated only along PC2, with the relative proportions of AA and dihomo-g-linolenic acid as the main discriminant factors (Figure 4).


Polyunsaturated Fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications.

Pereira H, Barreira L, Figueiredo F, Custódio L, Vizetto-Duarte C, Polo C, Rešek E, Engelen A, Varela J - Mar Drugs (2012)

PCA of the fatty acid composition of macroalgae showing the data scores labeled by phylum. Green—Chlorophyta; Brown—Phaeophyta; Red—Rhodophyta.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3475264&req=5

marinedrugs-10-01920-f004: PCA of the fatty acid composition of macroalgae showing the data scores labeled by phylum. Green—Chlorophyta; Brown—Phaeophyta; Red—Rhodophyta.
Mentions: Principal Components Analysis (PCA) was performed on the 21 detected fatty acids as a proportion of total fatty acid content, to assess the relationship between the 17 strains belonging to the three different phyla. The levels of capric (C10:0), myristic, hexadecatrienoic (n-3 and n-6) and ALA were removed from the multivariate analysis due to their low variation, therefore promoting a more reliable analysis. The first two components explain 46.6% of the total variation, 26% for PC1 and 20.5% for PC2 (both significant). In the loading scatter plot of the variables (FA; Figure 3), AA, EPA, DHA, pentadecylic (C15:0), behenic (C22:0), lignoceric (C24:0) and hexadecadienoic (C16:2n-6) acids were the most discriminant variables along PC1, while palmitic (C16:0), oleic (C18:1n-9c), elaidic (C18:1n-9t) and dihomo-γ-linolenic (C20:3n-6) acids were the main discriminant FA along PC2. In this plot, FA are distributed according to their saturation: most SFA are placed on the upper quadrants while most PUFA grouped in the lower left quadrant. In the scores plot, species clustered according to their phylum (Figure 4), suggesting that each phylum has a distinct FA profile and supporting earlier evidence that lipid composition may be a biochemical marker for each taxonomic group [24,36,39]. Besides its evident application in phylogenic studies, this feature may help to assign different algae to distinct diets. In this sense, the placement of the rhodophytes and phaeophytes in the left quadrants, and of all chlorophytes in the right quadrants, indicate that the first two phyla display a lipid profile clearly enriched in pentadecylic, stearic, EPA, DHA, AA and eicosenoic (C20:1) acids. Within the Chlorophyta phylum, Codium strains are located further to the right due to their increased content in n-3 hexadecatrienoic (C16:3n-3), behenic (C22:0) and lignoceric (C24:0) acids. The Rhodophyta and Phaeophyta species are separated only along PC2, with the relative proportions of AA and dihomo-g-linolenic acid as the main discriminant factors (Figure 4).

Bottom Line: The obtained data showed that rhodophytes and phaeophytes have higher concentrations of PUFA, particularly from the n-3 series, thereby being a better source of these compounds.Ulva was an exception within the Chlorophyta, as it presented high concentrations of n-3 PUFA, α-linolenic acid in particular.In conclusion, macroalgae can be considered as a potential source for large-scale production of essential PUFA with wide applications in the nutraceutical and pharmacological industries.

View Article: PubMed Central - PubMed

Affiliation: Centre of Marine Sciences, University of Algarve, Faro 8005-139, Portugal. hgpereira@ualg.pt

ABSTRACT
As mammals are unable to synthesize essential polyunsaturated fatty acids (PUFA), these compounds need to be taken in through diet. Nowadays, obtaining essential PUFA in diet is becoming increasingly difficult; therefore this work investigated the suitability of using macroalgae as novel dietary sources of PUFA. Hence, 17 macroalgal species from three different phyla (Chlorophyta, Phaeophyta and Rhodophyta) were analyzed and their fatty acid methyl esters (FAME) profile was assessed. Each phylum presented a characteristic fatty acid signature as evidenced by clustering of PUFA profiles of algae belonging to the same phylum in a Principal Components Analysis. The major PUFA detected in all phyla were C(18) and C(20), namely linoleic, arachidonic and eicosapentaenoic acids. The obtained data showed that rhodophytes and phaeophytes have higher concentrations of PUFA, particularly from the n-3 series, thereby being a better source of these compounds. Moreover, rhodophytes and phaeophytes presented "healthier" ∑n-6/∑n-3 and PUFA/saturated fatty acid ratios than chlorophytes. Ulva was an exception within the Chlorophyta, as it presented high concentrations of n-3 PUFA, α-linolenic acid in particular. In conclusion, macroalgae can be considered as a potential source for large-scale production of essential PUFA with wide applications in the nutraceutical and pharmacological industries.

Show MeSH