Limits...
Polyunsaturated Fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications.

Pereira H, Barreira L, Figueiredo F, Custódio L, Vizetto-Duarte C, Polo C, Rešek E, Engelen A, Varela J - Mar Drugs (2012)

Bottom Line: The obtained data showed that rhodophytes and phaeophytes have higher concentrations of PUFA, particularly from the n-3 series, thereby being a better source of these compounds.Ulva was an exception within the Chlorophyta, as it presented high concentrations of n-3 PUFA, α-linolenic acid in particular.In conclusion, macroalgae can be considered as a potential source for large-scale production of essential PUFA with wide applications in the nutraceutical and pharmacological industries.

View Article: PubMed Central - PubMed

Affiliation: Centre of Marine Sciences, University of Algarve, Faro 8005-139, Portugal. hgpereira@ualg.pt

ABSTRACT
As mammals are unable to synthesize essential polyunsaturated fatty acids (PUFA), these compounds need to be taken in through diet. Nowadays, obtaining essential PUFA in diet is becoming increasingly difficult; therefore this work investigated the suitability of using macroalgae as novel dietary sources of PUFA. Hence, 17 macroalgal species from three different phyla (Chlorophyta, Phaeophyta and Rhodophyta) were analyzed and their fatty acid methyl esters (FAME) profile was assessed. Each phylum presented a characteristic fatty acid signature as evidenced by clustering of PUFA profiles of algae belonging to the same phylum in a Principal Components Analysis. The major PUFA detected in all phyla were C(18) and C(20), namely linoleic, arachidonic and eicosapentaenoic acids. The obtained data showed that rhodophytes and phaeophytes have higher concentrations of PUFA, particularly from the n-3 series, thereby being a better source of these compounds. Moreover, rhodophytes and phaeophytes presented "healthier" ∑n-6/∑n-3 and PUFA/saturated fatty acid ratios than chlorophytes. Ulva was an exception within the Chlorophyta, as it presented high concentrations of n-3 PUFA, α-linolenic acid in particular. In conclusion, macroalgae can be considered as a potential source for large-scale production of essential PUFA with wide applications in the nutraceutical and pharmacological industries.

Show MeSH
Schematic representation of the n-3 and n-6 fatty acid biosynthetic pathway with the enzymes responsible for each step of desaturation/elongation depicted in gray boxes. The partial β-oxidation that results in docosapentaenoic acid (DPA) or docosahexaenoic acid (DHA) formation is highlighted in blue. Differences occurring at each step are marked red in the chemical structure. Adapted from Marszalek and Lodish [19].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3475264&req=5

marinedrugs-10-01920-f001: Schematic representation of the n-3 and n-6 fatty acid biosynthetic pathway with the enzymes responsible for each step of desaturation/elongation depicted in gray boxes. The partial β-oxidation that results in docosapentaenoic acid (DPA) or docosahexaenoic acid (DHA) formation is highlighted in blue. Differences occurring at each step are marked red in the chemical structure. Adapted from Marszalek and Lodish [19].

Mentions: Almost all of the required long chain unsaturated fatty acids are synthesized by vertebrates through several elongation and desaturation steps [3,8] (Figure 1). The exceptions are α-linolenic acid (ALA) and linoleic acid (LA). These precursors for the biosynthesis of all other n-3 and n-6 PUFA cannot be synthesized by vertebrates and must, therefore, be present in diet, hence their classification as essential [13]. Humans can convert ALA to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); however, very long chain polyunsaturated fatty acids (VLCPUFA; >C18) are only synthesized to a limited extent: 8% and 21% for EPA and 4% and 9% for DHA in men and women, respectively [14,15,16,17]. Hence, in addition to the essential fatty acids, VLCPUFA must also be taken through dietary means or direct supplementation in order to meet with the European recommendations (European Food Safety Agency: EPA + DHA 250 mg/day) [18].


Polyunsaturated Fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications.

Pereira H, Barreira L, Figueiredo F, Custódio L, Vizetto-Duarte C, Polo C, Rešek E, Engelen A, Varela J - Mar Drugs (2012)

Schematic representation of the n-3 and n-6 fatty acid biosynthetic pathway with the enzymes responsible for each step of desaturation/elongation depicted in gray boxes. The partial β-oxidation that results in docosapentaenoic acid (DPA) or docosahexaenoic acid (DHA) formation is highlighted in blue. Differences occurring at each step are marked red in the chemical structure. Adapted from Marszalek and Lodish [19].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3475264&req=5

marinedrugs-10-01920-f001: Schematic representation of the n-3 and n-6 fatty acid biosynthetic pathway with the enzymes responsible for each step of desaturation/elongation depicted in gray boxes. The partial β-oxidation that results in docosapentaenoic acid (DPA) or docosahexaenoic acid (DHA) formation is highlighted in blue. Differences occurring at each step are marked red in the chemical structure. Adapted from Marszalek and Lodish [19].
Mentions: Almost all of the required long chain unsaturated fatty acids are synthesized by vertebrates through several elongation and desaturation steps [3,8] (Figure 1). The exceptions are α-linolenic acid (ALA) and linoleic acid (LA). These precursors for the biosynthesis of all other n-3 and n-6 PUFA cannot be synthesized by vertebrates and must, therefore, be present in diet, hence their classification as essential [13]. Humans can convert ALA to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); however, very long chain polyunsaturated fatty acids (VLCPUFA; >C18) are only synthesized to a limited extent: 8% and 21% for EPA and 4% and 9% for DHA in men and women, respectively [14,15,16,17]. Hence, in addition to the essential fatty acids, VLCPUFA must also be taken through dietary means or direct supplementation in order to meet with the European recommendations (European Food Safety Agency: EPA + DHA 250 mg/day) [18].

Bottom Line: The obtained data showed that rhodophytes and phaeophytes have higher concentrations of PUFA, particularly from the n-3 series, thereby being a better source of these compounds.Ulva was an exception within the Chlorophyta, as it presented high concentrations of n-3 PUFA, α-linolenic acid in particular.In conclusion, macroalgae can be considered as a potential source for large-scale production of essential PUFA with wide applications in the nutraceutical and pharmacological industries.

View Article: PubMed Central - PubMed

Affiliation: Centre of Marine Sciences, University of Algarve, Faro 8005-139, Portugal. hgpereira@ualg.pt

ABSTRACT
As mammals are unable to synthesize essential polyunsaturated fatty acids (PUFA), these compounds need to be taken in through diet. Nowadays, obtaining essential PUFA in diet is becoming increasingly difficult; therefore this work investigated the suitability of using macroalgae as novel dietary sources of PUFA. Hence, 17 macroalgal species from three different phyla (Chlorophyta, Phaeophyta and Rhodophyta) were analyzed and their fatty acid methyl esters (FAME) profile was assessed. Each phylum presented a characteristic fatty acid signature as evidenced by clustering of PUFA profiles of algae belonging to the same phylum in a Principal Components Analysis. The major PUFA detected in all phyla were C(18) and C(20), namely linoleic, arachidonic and eicosapentaenoic acids. The obtained data showed that rhodophytes and phaeophytes have higher concentrations of PUFA, particularly from the n-3 series, thereby being a better source of these compounds. Moreover, rhodophytes and phaeophytes presented "healthier" ∑n-6/∑n-3 and PUFA/saturated fatty acid ratios than chlorophytes. Ulva was an exception within the Chlorophyta, as it presented high concentrations of n-3 PUFA, α-linolenic acid in particular. In conclusion, macroalgae can be considered as a potential source for large-scale production of essential PUFA with wide applications in the nutraceutical and pharmacological industries.

Show MeSH