Limits...
Effects of glycerol and creatine hyperhydration on doping-relevant blood parameters.

Polyviou TP, Easton C, Beis L, Malkova D, Takas P, Hambly C, Speakman JR, Koehler K, Pitsiladis YP - Nutrients (2012)

Bottom Line: However, the scientific basis of the inclusion of Gly as a "masking agent" remains inconclusive.This hyperhydration did not significantly alter plasma volume or any of the doping-relevant blood parameters (e.g., hematocrit, Hb, reticulocytes and total Hb-mass) even when Gly was clearly detectable in urine samples.In conclusion, this study shows that supplementation with hyperhydrating solution containing Gly for 7 days does not significantly alter doping-relevant blood parameters.

View Article: PubMed Central - PubMed

Affiliation: Institute of Cardiovascular & Medical Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, UK. t.polyviou.1@research.gla.ac.uk

ABSTRACT
Glycerol is prohibited as an ergogenic aid by the World Anti-Doping Agency (WADA) due to the potential for its plasma expansion properties to have masking effects. However, the scientific basis of the inclusion of Gly as a "masking agent" remains inconclusive. The purpose of this study was to determine the effects of a hyperhydrating supplement containing Gly on doping-relevant blood parameters. Nine trained males ingested a hyperhydrating mixture twice per day for 7 days containing 1.0 g·kg(-1) body mass (BM) of Gly, 10.0 g of creatine and 75.0 g of glucose. Blood samples were collected and total hemoglobin (Hb) mass determined using the optimized carbon monoxide (CO) rebreathing method pre- and post-supplementation. BM and total body water (TBW) increased significantly following supplementation by 1.1 ± 1.2 and 1.0 ± 1.2 L (BM, P < 0.01; TBW, P <0.01), respectively. This hyperhydration did not significantly alter plasma volume or any of the doping-relevant blood parameters (e.g., hematocrit, Hb, reticulocytes and total Hb-mass) even when Gly was clearly detectable in urine samples. In conclusion, this study shows that supplementation with hyperhydrating solution containing Gly for 7 days does not significantly alter doping-relevant blood parameters.

Show MeSH

Related in: MedlinePlus

Schematic representation of tHb-mass procedure.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3475229&req=5

nutrients-04-01171-f002: Schematic representation of tHb-mass procedure.

Mentions: The optimized CO re-breathing method was used to determine tHb-mass pre- and post-supplementation and is shown graphically in Figure 2 [16,19,20]. Briefly, a bolus of chemically pure CO dose of 1.0 mL·kg−1 BM was administered with the first breath through a spirometer and rebreathed for 2 min with 4.0 L of oxygen. Change in percent carboxyhemoglobin in venous blood samples (from baseline to 8 min after CO administration), analyzed using a blood gas analyser (ABL 725, Radiometer, Copenhagen, Denmark), was used to determine tHb-mass. In addition, erythrocyte count as well as PV was derived as previously described elsewhere [25]. During pre- and post-supplementation tests, the optimized carbon (CO) monoxide re-breathing method was performed several times (without the use of CO) prior to the ‘real’ measurement. This was done to ensure that subjects were familiar and comfortable with the procedure and to avoid errors and leaks during the actual measurement. Work performed in our laboratory showed that typical error of tHb-mass measurement is <2% and is in agreement with previous findings [19]. Generally, the procedure was conducted in good manner with no leaks being detected during the real measurement and participants of the current study tolerated the procedure well with no signs of CO toxicity.


Effects of glycerol and creatine hyperhydration on doping-relevant blood parameters.

Polyviou TP, Easton C, Beis L, Malkova D, Takas P, Hambly C, Speakman JR, Koehler K, Pitsiladis YP - Nutrients (2012)

Schematic representation of tHb-mass procedure.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3475229&req=5

nutrients-04-01171-f002: Schematic representation of tHb-mass procedure.
Mentions: The optimized CO re-breathing method was used to determine tHb-mass pre- and post-supplementation and is shown graphically in Figure 2 [16,19,20]. Briefly, a bolus of chemically pure CO dose of 1.0 mL·kg−1 BM was administered with the first breath through a spirometer and rebreathed for 2 min with 4.0 L of oxygen. Change in percent carboxyhemoglobin in venous blood samples (from baseline to 8 min after CO administration), analyzed using a blood gas analyser (ABL 725, Radiometer, Copenhagen, Denmark), was used to determine tHb-mass. In addition, erythrocyte count as well as PV was derived as previously described elsewhere [25]. During pre- and post-supplementation tests, the optimized carbon (CO) monoxide re-breathing method was performed several times (without the use of CO) prior to the ‘real’ measurement. This was done to ensure that subjects were familiar and comfortable with the procedure and to avoid errors and leaks during the actual measurement. Work performed in our laboratory showed that typical error of tHb-mass measurement is <2% and is in agreement with previous findings [19]. Generally, the procedure was conducted in good manner with no leaks being detected during the real measurement and participants of the current study tolerated the procedure well with no signs of CO toxicity.

Bottom Line: However, the scientific basis of the inclusion of Gly as a "masking agent" remains inconclusive.This hyperhydration did not significantly alter plasma volume or any of the doping-relevant blood parameters (e.g., hematocrit, Hb, reticulocytes and total Hb-mass) even when Gly was clearly detectable in urine samples.In conclusion, this study shows that supplementation with hyperhydrating solution containing Gly for 7 days does not significantly alter doping-relevant blood parameters.

View Article: PubMed Central - PubMed

Affiliation: Institute of Cardiovascular & Medical Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, UK. t.polyviou.1@research.gla.ac.uk

ABSTRACT
Glycerol is prohibited as an ergogenic aid by the World Anti-Doping Agency (WADA) due to the potential for its plasma expansion properties to have masking effects. However, the scientific basis of the inclusion of Gly as a "masking agent" remains inconclusive. The purpose of this study was to determine the effects of a hyperhydrating supplement containing Gly on doping-relevant blood parameters. Nine trained males ingested a hyperhydrating mixture twice per day for 7 days containing 1.0 g·kg(-1) body mass (BM) of Gly, 10.0 g of creatine and 75.0 g of glucose. Blood samples were collected and total hemoglobin (Hb) mass determined using the optimized carbon monoxide (CO) rebreathing method pre- and post-supplementation. BM and total body water (TBW) increased significantly following supplementation by 1.1 ± 1.2 and 1.0 ± 1.2 L (BM, P < 0.01; TBW, P <0.01), respectively. This hyperhydration did not significantly alter plasma volume or any of the doping-relevant blood parameters (e.g., hematocrit, Hb, reticulocytes and total Hb-mass) even when Gly was clearly detectable in urine samples. In conclusion, this study shows that supplementation with hyperhydrating solution containing Gly for 7 days does not significantly alter doping-relevant blood parameters.

Show MeSH
Related in: MedlinePlus