Limits...
Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics.

Josefsen LB, Boyle RW - Theranostics (2012)

Bottom Line: Porphyrinic molecules have a unique theranostic role in disease therapy; they have been used to image, detect and treat different forms of diseased tissue including age-related macular degeneration and a number of different cancer types.Current focus is on the clinical imaging of tumour tissue; targeted delivery of photosensitisers and the potential of photosensitisers in multimodal biomedical theranostic nanoplatforms.The roles of porphyrinic molecules in imaging and pdt, along with research into improving their selective uptake in diseased tissue and their utility in theranostic applications are highlighted in this Review.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, The University Of Hull, Kingston-Upon-Hull, HU6 7RX, U.K.

ABSTRACT
Porphyrinic molecules have a unique theranostic role in disease therapy; they have been used to image, detect and treat different forms of diseased tissue including age-related macular degeneration and a number of different cancer types. Current focus is on the clinical imaging of tumour tissue; targeted delivery of photosensitisers and the potential of photosensitisers in multimodal biomedical theranostic nanoplatforms. The roles of porphyrinic molecules in imaging and pdt, along with research into improving their selective uptake in diseased tissue and their utility in theranostic applications are highlighted in this Review.

No MeSH data available.


Related in: MedlinePlus

NCS Porphyrin And Isothiocyanate-Amine Coupling Reaction.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3475217&req=5

Figure 19: NCS Porphyrin And Isothiocyanate-Amine Coupling Reaction.

Mentions: The term photoimmunotherapy (PIT) is used in reference to pdt utilising photosensitiser-antibody conjugates 3, 14, 25, 65, 122-124, 142, 158-164. A range of antibody-photosensitiser conjugates have been trialed for pdt including - (scFv) bound to hydroxyl and pyridiniumyl porphyrins 64, 65, 159, 161, and monoclonal antibody (MAb) conjugates of cationic porphyrins 64, 65, 161, 162. The two main antibody species that have been investigated are MAb and scFv 159, 160, 163. A number of photosensitiser-MAb conjugates have been evaluated against a range of targets including oncofoetal antigens; receptors for signal transduction pathways; and growth factor receptors. However, the conjugation of the photosensitisers to the MAbs was not efficient: MAbs were initially appended to porphyrins via activated esters and carbodiimide coupling chemistry to porphyrins bearing multiple carboxy groups and the free amines within the MAb structure, such methodology gives rise to antibody crosslinking issues and/or changes in the photophysics of the photosensitiser 159, 163. Coupling to polymeric carriers has also been used to increase photosensitiser loading and conjugate solubility. Sutton and colleagues developed a porphyrin molecule (figure 19) that incorporated a reactive isothiocyanate (NCS) group designed to allow conjugation to biomolecules under very mild conditions, with no intermediates or by-products 165. The synthesised porphyrin underwent bioconjugation through direct reaction of the single reactive isothiocyanato group and the primary amino group present on the side chain of lysine residues; negligible non-specific binding was observed (figure 19) 64, 65, 159.


Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics.

Josefsen LB, Boyle RW - Theranostics (2012)

NCS Porphyrin And Isothiocyanate-Amine Coupling Reaction.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3475217&req=5

Figure 19: NCS Porphyrin And Isothiocyanate-Amine Coupling Reaction.
Mentions: The term photoimmunotherapy (PIT) is used in reference to pdt utilising photosensitiser-antibody conjugates 3, 14, 25, 65, 122-124, 142, 158-164. A range of antibody-photosensitiser conjugates have been trialed for pdt including - (scFv) bound to hydroxyl and pyridiniumyl porphyrins 64, 65, 159, 161, and monoclonal antibody (MAb) conjugates of cationic porphyrins 64, 65, 161, 162. The two main antibody species that have been investigated are MAb and scFv 159, 160, 163. A number of photosensitiser-MAb conjugates have been evaluated against a range of targets including oncofoetal antigens; receptors for signal transduction pathways; and growth factor receptors. However, the conjugation of the photosensitisers to the MAbs was not efficient: MAbs were initially appended to porphyrins via activated esters and carbodiimide coupling chemistry to porphyrins bearing multiple carboxy groups and the free amines within the MAb structure, such methodology gives rise to antibody crosslinking issues and/or changes in the photophysics of the photosensitiser 159, 163. Coupling to polymeric carriers has also been used to increase photosensitiser loading and conjugate solubility. Sutton and colleagues developed a porphyrin molecule (figure 19) that incorporated a reactive isothiocyanate (NCS) group designed to allow conjugation to biomolecules under very mild conditions, with no intermediates or by-products 165. The synthesised porphyrin underwent bioconjugation through direct reaction of the single reactive isothiocyanato group and the primary amino group present on the side chain of lysine residues; negligible non-specific binding was observed (figure 19) 64, 65, 159.

Bottom Line: Porphyrinic molecules have a unique theranostic role in disease therapy; they have been used to image, detect and treat different forms of diseased tissue including age-related macular degeneration and a number of different cancer types.Current focus is on the clinical imaging of tumour tissue; targeted delivery of photosensitisers and the potential of photosensitisers in multimodal biomedical theranostic nanoplatforms.The roles of porphyrinic molecules in imaging and pdt, along with research into improving their selective uptake in diseased tissue and their utility in theranostic applications are highlighted in this Review.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, The University Of Hull, Kingston-Upon-Hull, HU6 7RX, U.K.

ABSTRACT
Porphyrinic molecules have a unique theranostic role in disease therapy; they have been used to image, detect and treat different forms of diseased tissue including age-related macular degeneration and a number of different cancer types. Current focus is on the clinical imaging of tumour tissue; targeted delivery of photosensitisers and the potential of photosensitisers in multimodal biomedical theranostic nanoplatforms. The roles of porphyrinic molecules in imaging and pdt, along with research into improving their selective uptake in diseased tissue and their utility in theranostic applications are highlighted in this Review.

No MeSH data available.


Related in: MedlinePlus