Limits...
The effect of marination on lactic acid bacteria communities in raw broiler fillet strips.

Nieminen TT, Välitalo H, Säde E, Paloranta A, Koskinen K, Björkroth J - Front Microbiol (2012)

Bottom Line: The communities were characterized using two culture-independent methods: 16S rRNA gene fragment sequencing and terminal restriction fragment length polymorphism.By mixing the different marinade components with broiler meat, we showed that marination changed the community composition and favored Leuconostoc spp. and Lactobacillus spp. by the combined effect of carbohydrates and acetic acid in marinade.Marination increased the maximum level of lactic acid bacteria in broiler meat and enhanced CO(2) production and acidification of meat during the chilled storage.

View Article: PubMed Central - PubMed

Affiliation: Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki Helsinki, Finland.

ABSTRACT
Marination with marinade containing salt, sugar, and acetic acid is commonly used in Finland to enhance the value of raw broiler meat. In this study, we investigated the effect of marination, marinade components and storage time on composition of bacterial communities in modified atmosphere-packaged (MAP) broiler fillet strips. The communities were characterized using two culture-independent methods: 16S rRNA gene fragment sequencing and terminal restriction fragment length polymorphism. In unmarinated broiler fillet strips, Lactococcus spp. and Carnobacterium spp. predominated at the early storage phase but were partially replaced by Lactobacillus spp. and Leuconostoc spp. when the chilled storage time was extended. In the marinated fillet strips, Lactobacillus spp. and Leuconostoc spp. predominated independent from the storage time. By mixing the different marinade components with broiler meat, we showed that marination changed the community composition and favored Leuconostoc spp. and Lactobacillus spp. by the combined effect of carbohydrates and acetic acid in marinade. Marination increased the maximum level of lactic acid bacteria in broiler meat and enhanced CO(2) production and acidification of meat during the chilled storage. Accumulation of CO(2) in package head-space due to the enhanced growth of Leuconostoc spp. in marinated meat may lead to bulging of packages, which is a spoilage defect frequently associated with marinated and MAP raw broiler preparations in Finland.

No MeSH data available.


Related in: MedlinePlus

Phylogenetic structures of bacterial communities in marinated (M) and unmarinated (N) broiler fillet strips at the early (1) and the late (2) storage phases as indicated by 16S rRNA gene fragment sequencing.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3475127&req=5

Figure 2: Phylogenetic structures of bacterial communities in marinated (M) and unmarinated (N) broiler fillet strips at the early (1) and the late (2) storage phases as indicated by 16S rRNA gene fragment sequencing.

Mentions: The average community compositions were elucidated by sequencing of the 16S rRNA gene fragments which were amplified from the pooled community DNA samples. We obtained 5920, 8253, 2817, and 5071 sequences from the samples N1, N2, M1, and M2, respectively. Median sequence length of the combined data set was 490 bp. The sequences were assigned almost exclusively to LAB (Figure 2). Vagococcus, Lactococcus, and Carnobacterium predominated in unmarinated meat at the early storage phase and were partly replaced by Leuconostoc and Lactobacillus at the late storage phase. In marinated meat leuconostocs and lactobacilli predominated at both early and late storage phases. Similarly to unmarinated meat, the proportion of Leuconostoc spp. in marinated meat appeared to increase at the late storage phase.


The effect of marination on lactic acid bacteria communities in raw broiler fillet strips.

Nieminen TT, Välitalo H, Säde E, Paloranta A, Koskinen K, Björkroth J - Front Microbiol (2012)

Phylogenetic structures of bacterial communities in marinated (M) and unmarinated (N) broiler fillet strips at the early (1) and the late (2) storage phases as indicated by 16S rRNA gene fragment sequencing.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3475127&req=5

Figure 2: Phylogenetic structures of bacterial communities in marinated (M) and unmarinated (N) broiler fillet strips at the early (1) and the late (2) storage phases as indicated by 16S rRNA gene fragment sequencing.
Mentions: The average community compositions were elucidated by sequencing of the 16S rRNA gene fragments which were amplified from the pooled community DNA samples. We obtained 5920, 8253, 2817, and 5071 sequences from the samples N1, N2, M1, and M2, respectively. Median sequence length of the combined data set was 490 bp. The sequences were assigned almost exclusively to LAB (Figure 2). Vagococcus, Lactococcus, and Carnobacterium predominated in unmarinated meat at the early storage phase and were partly replaced by Leuconostoc and Lactobacillus at the late storage phase. In marinated meat leuconostocs and lactobacilli predominated at both early and late storage phases. Similarly to unmarinated meat, the proportion of Leuconostoc spp. in marinated meat appeared to increase at the late storage phase.

Bottom Line: The communities were characterized using two culture-independent methods: 16S rRNA gene fragment sequencing and terminal restriction fragment length polymorphism.By mixing the different marinade components with broiler meat, we showed that marination changed the community composition and favored Leuconostoc spp. and Lactobacillus spp. by the combined effect of carbohydrates and acetic acid in marinade.Marination increased the maximum level of lactic acid bacteria in broiler meat and enhanced CO(2) production and acidification of meat during the chilled storage.

View Article: PubMed Central - PubMed

Affiliation: Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki Helsinki, Finland.

ABSTRACT
Marination with marinade containing salt, sugar, and acetic acid is commonly used in Finland to enhance the value of raw broiler meat. In this study, we investigated the effect of marination, marinade components and storage time on composition of bacterial communities in modified atmosphere-packaged (MAP) broiler fillet strips. The communities were characterized using two culture-independent methods: 16S rRNA gene fragment sequencing and terminal restriction fragment length polymorphism. In unmarinated broiler fillet strips, Lactococcus spp. and Carnobacterium spp. predominated at the early storage phase but were partially replaced by Lactobacillus spp. and Leuconostoc spp. when the chilled storage time was extended. In the marinated fillet strips, Lactobacillus spp. and Leuconostoc spp. predominated independent from the storage time. By mixing the different marinade components with broiler meat, we showed that marination changed the community composition and favored Leuconostoc spp. and Lactobacillus spp. by the combined effect of carbohydrates and acetic acid in marinade. Marination increased the maximum level of lactic acid bacteria in broiler meat and enhanced CO(2) production and acidification of meat during the chilled storage. Accumulation of CO(2) in package head-space due to the enhanced growth of Leuconostoc spp. in marinated meat may lead to bulging of packages, which is a spoilage defect frequently associated with marinated and MAP raw broiler preparations in Finland.

No MeSH data available.


Related in: MedlinePlus