Limits...
The effect of marination on lactic acid bacteria communities in raw broiler fillet strips.

Nieminen TT, Välitalo H, Säde E, Paloranta A, Koskinen K, Björkroth J - Front Microbiol (2012)

Bottom Line: The communities were characterized using two culture-independent methods: 16S rRNA gene fragment sequencing and terminal restriction fragment length polymorphism.By mixing the different marinade components with broiler meat, we showed that marination changed the community composition and favored Leuconostoc spp. and Lactobacillus spp. by the combined effect of carbohydrates and acetic acid in marinade.Marination increased the maximum level of lactic acid bacteria in broiler meat and enhanced CO(2) production and acidification of meat during the chilled storage.

View Article: PubMed Central - PubMed

Affiliation: Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki Helsinki, Finland.

ABSTRACT
Marination with marinade containing salt, sugar, and acetic acid is commonly used in Finland to enhance the value of raw broiler meat. In this study, we investigated the effect of marination, marinade components and storage time on composition of bacterial communities in modified atmosphere-packaged (MAP) broiler fillet strips. The communities were characterized using two culture-independent methods: 16S rRNA gene fragment sequencing and terminal restriction fragment length polymorphism. In unmarinated broiler fillet strips, Lactococcus spp. and Carnobacterium spp. predominated at the early storage phase but were partially replaced by Lactobacillus spp. and Leuconostoc spp. when the chilled storage time was extended. In the marinated fillet strips, Lactobacillus spp. and Leuconostoc spp. predominated independent from the storage time. By mixing the different marinade components with broiler meat, we showed that marination changed the community composition and favored Leuconostoc spp. and Lactobacillus spp. by the combined effect of carbohydrates and acetic acid in marinade. Marination increased the maximum level of lactic acid bacteria in broiler meat and enhanced CO(2) production and acidification of meat during the chilled storage. Accumulation of CO(2) in package head-space due to the enhanced growth of Leuconostoc spp. in marinated meat may lead to bulging of packages, which is a spoilage defect frequently associated with marinated and MAP raw broiler preparations in Finland.

No MeSH data available.


Related in: MedlinePlus

Non-metric multidimensional scaling of T-RFLP data obtained from bacterial communities in marinated (M) and natural (N) broiler fillet strips at the early (1) and the late (2) phase of chilled storage. Ellipses represent standard deviations of the community structures.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3475127&req=5

Figure 1: Non-metric multidimensional scaling of T-RFLP data obtained from bacterial communities in marinated (M) and natural (N) broiler fillet strips at the early (1) and the late (2) phase of chilled storage. Ellipses represent standard deviations of the community structures.

Mentions: The NMDS of the T-RFLP data grouped the communities according to the marination treatment and storage phase (Figure 1). Fitting of the centroids of the two factors (storage phase and marination) separately to the ordination resulted an R2 value of 0.22 and P-value of 0.001 for the storage phase and R2 value of 0.37 and P-value of 0.001 for the marination treatment indicating that both storage phase and marination affected the community composition in the commercial preparations.


The effect of marination on lactic acid bacteria communities in raw broiler fillet strips.

Nieminen TT, Välitalo H, Säde E, Paloranta A, Koskinen K, Björkroth J - Front Microbiol (2012)

Non-metric multidimensional scaling of T-RFLP data obtained from bacterial communities in marinated (M) and natural (N) broiler fillet strips at the early (1) and the late (2) phase of chilled storage. Ellipses represent standard deviations of the community structures.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3475127&req=5

Figure 1: Non-metric multidimensional scaling of T-RFLP data obtained from bacterial communities in marinated (M) and natural (N) broiler fillet strips at the early (1) and the late (2) phase of chilled storage. Ellipses represent standard deviations of the community structures.
Mentions: The NMDS of the T-RFLP data grouped the communities according to the marination treatment and storage phase (Figure 1). Fitting of the centroids of the two factors (storage phase and marination) separately to the ordination resulted an R2 value of 0.22 and P-value of 0.001 for the storage phase and R2 value of 0.37 and P-value of 0.001 for the marination treatment indicating that both storage phase and marination affected the community composition in the commercial preparations.

Bottom Line: The communities were characterized using two culture-independent methods: 16S rRNA gene fragment sequencing and terminal restriction fragment length polymorphism.By mixing the different marinade components with broiler meat, we showed that marination changed the community composition and favored Leuconostoc spp. and Lactobacillus spp. by the combined effect of carbohydrates and acetic acid in marinade.Marination increased the maximum level of lactic acid bacteria in broiler meat and enhanced CO(2) production and acidification of meat during the chilled storage.

View Article: PubMed Central - PubMed

Affiliation: Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki Helsinki, Finland.

ABSTRACT
Marination with marinade containing salt, sugar, and acetic acid is commonly used in Finland to enhance the value of raw broiler meat. In this study, we investigated the effect of marination, marinade components and storage time on composition of bacterial communities in modified atmosphere-packaged (MAP) broiler fillet strips. The communities were characterized using two culture-independent methods: 16S rRNA gene fragment sequencing and terminal restriction fragment length polymorphism. In unmarinated broiler fillet strips, Lactococcus spp. and Carnobacterium spp. predominated at the early storage phase but were partially replaced by Lactobacillus spp. and Leuconostoc spp. when the chilled storage time was extended. In the marinated fillet strips, Lactobacillus spp. and Leuconostoc spp. predominated independent from the storage time. By mixing the different marinade components with broiler meat, we showed that marination changed the community composition and favored Leuconostoc spp. and Lactobacillus spp. by the combined effect of carbohydrates and acetic acid in marinade. Marination increased the maximum level of lactic acid bacteria in broiler meat and enhanced CO(2) production and acidification of meat during the chilled storage. Accumulation of CO(2) in package head-space due to the enhanced growth of Leuconostoc spp. in marinated meat may lead to bulging of packages, which is a spoilage defect frequently associated with marinated and MAP raw broiler preparations in Finland.

No MeSH data available.


Related in: MedlinePlus