Limits...
Ion-sensing properties of 1D vanadium pentoxide nanostructures.

Vieira NC, Avansi W, Figueiredo A, Ribeiro C, Mastelaro VR, Guimarães FE - Nanoscale Res Lett (2012)

Bottom Line: The application of one-dimensional (1D) V2O5·nH2O nanostructures as pH sensing material was evaluated. 1D V2O5·nH2O nanostructures were obtained by a hydrothermal method with systematic control of morphology forming different nanostructures: nanoribbons, nanowires and nanorods.Deposited onto Au-covered substrates, 1D V2O5·nH2O nanostructures were employed as gate material in pH sensors based on separative extended gate FET as an alternative to provide FET isolation from the chemical environment. 1D V2O5·nH2O nanostructures showed pH sensitivity around the expected theoretical value.Due to high pH sensing properties, flexibility and low cost, further applications of 1D V2O5·nH2O nanostructures comprise enzyme FET-based biosensors using immobilized enzymes.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departamento de Física e Ciências dos Materiais, Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, São Carlos, São Paulo, CP 369/13560-970, Brazil. nirton@ursa.ifsc.usp.br.

ABSTRACT
The application of one-dimensional (1D) V2O5·nH2O nanostructures as pH sensing material was evaluated. 1D V2O5·nH2O nanostructures were obtained by a hydrothermal method with systematic control of morphology forming different nanostructures: nanoribbons, nanowires and nanorods. Deposited onto Au-covered substrates, 1D V2O5·nH2O nanostructures were employed as gate material in pH sensors based on separative extended gate FET as an alternative to provide FET isolation from the chemical environment. 1D V2O5·nH2O nanostructures showed pH sensitivity around the expected theoretical value. Due to high pH sensing properties, flexibility and low cost, further applications of 1D V2O5·nH2O nanostructures comprise enzyme FET-based biosensors using immobilized enzymes.

No MeSH data available.


FE-STEM images of a 1D V2O5.nH2O nanostructures synthesized. (a) 160°C, (b) 180°C and (c) 200°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3475107&req=5

Figure 3: FE-STEM images of a 1D V2O5.nH2O nanostructures synthesized. (a) 160°C, (b) 180°C and (c) 200°C.

Mentions: The bright field scanning transmission electron microscopy (STEM) images shown in Figure 3 confirm the morphology of the resulting nanostructures. As expected, different nanostructures were obtained. The samples synthesized at 160°C show a nanoribbon-like morphology (Figure 3a), while samples synthesized at 180°C and 200°C present, respectively, nanowire-like (Figure 3b) and nanorod-like (Figure 3c) morphologies [20].


Ion-sensing properties of 1D vanadium pentoxide nanostructures.

Vieira NC, Avansi W, Figueiredo A, Ribeiro C, Mastelaro VR, Guimarães FE - Nanoscale Res Lett (2012)

FE-STEM images of a 1D V2O5.nH2O nanostructures synthesized. (a) 160°C, (b) 180°C and (c) 200°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3475107&req=5

Figure 3: FE-STEM images of a 1D V2O5.nH2O nanostructures synthesized. (a) 160°C, (b) 180°C and (c) 200°C.
Mentions: The bright field scanning transmission electron microscopy (STEM) images shown in Figure 3 confirm the morphology of the resulting nanostructures. As expected, different nanostructures were obtained. The samples synthesized at 160°C show a nanoribbon-like morphology (Figure 3a), while samples synthesized at 180°C and 200°C present, respectively, nanowire-like (Figure 3b) and nanorod-like (Figure 3c) morphologies [20].

Bottom Line: The application of one-dimensional (1D) V2O5·nH2O nanostructures as pH sensing material was evaluated. 1D V2O5·nH2O nanostructures were obtained by a hydrothermal method with systematic control of morphology forming different nanostructures: nanoribbons, nanowires and nanorods.Deposited onto Au-covered substrates, 1D V2O5·nH2O nanostructures were employed as gate material in pH sensors based on separative extended gate FET as an alternative to provide FET isolation from the chemical environment. 1D V2O5·nH2O nanostructures showed pH sensitivity around the expected theoretical value.Due to high pH sensing properties, flexibility and low cost, further applications of 1D V2O5·nH2O nanostructures comprise enzyme FET-based biosensors using immobilized enzymes.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departamento de Física e Ciências dos Materiais, Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, São Carlos, São Paulo, CP 369/13560-970, Brazil. nirton@ursa.ifsc.usp.br.

ABSTRACT
The application of one-dimensional (1D) V2O5·nH2O nanostructures as pH sensing material was evaluated. 1D V2O5·nH2O nanostructures were obtained by a hydrothermal method with systematic control of morphology forming different nanostructures: nanoribbons, nanowires and nanorods. Deposited onto Au-covered substrates, 1D V2O5·nH2O nanostructures were employed as gate material in pH sensors based on separative extended gate FET as an alternative to provide FET isolation from the chemical environment. 1D V2O5·nH2O nanostructures showed pH sensitivity around the expected theoretical value. Due to high pH sensing properties, flexibility and low cost, further applications of 1D V2O5·nH2O nanostructures comprise enzyme FET-based biosensors using immobilized enzymes.

No MeSH data available.