Limits...
Ferroelectric and magnetic properties of Nd-doped Bi4 - xFeTi3O12 nanoparticles prepared through the egg-white method.

Batoo KM, Labis JP, Sharma R, Singh M - Nanoscale Res Lett (2012)

Bottom Line: Room temperature polarization-electric field (P-E) curves show that the samples are not saturated with maximum remanence polarization, Pr = 0.110 μC/cm2, and a relatively low coercive field, Ec = of 7.918 kV/cm, at an applied field of 1 kV/cm was observed for 5% Nd doping.The room temperature M-H hysteresis curve shows that the samples exhibit intrinsic antiferromagnetism with a weak ferromagnetism.These properties entitle the grown nanoparticles of BNFT as one of the few multiferroic materials that exhibit decent magnetization and electric polarization.

View Article: PubMed Central - HTML - PubMed

Affiliation: King Abdullah Institute for Nanotechnology, King Saud University, P,O, Box 2460, Riyadh, 1151, Saudi Arabia. khalid.mujasam@gmail.com.

ABSTRACT
Multiferroic behavior of Bi4 - xNdxFeTi3O12 (0.0 ≤ × ≤ 0.25, × = 0.05) ceramic nanoparticles prepared through the egg-white method was investigated. The dielectric properties of the samples show normal behavior and are explained in the light of space charge polarization. Room temperature polarization-electric field (P-E) curves show that the samples are not saturated with maximum remanence polarization, Pr = 0.110 μC/cm2, and a relatively low coercive field, Ec = of 7.918 kV/cm, at an applied field of 1 kV/cm was observed for 5% Nd doping. The room temperature M-H hysteresis curve shows that the samples exhibit intrinsic antiferromagnetism with a weak ferromagnetism. These properties entitle the grown nanoparticles of BNFT as one of the few multiferroic materials that exhibit decent magnetization and electric polarization.

No MeSH data available.


Grain size distribution with composition.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3475093&req=5

Figure 5: Grain size distribution with composition.

Mentions: The powder samples of BNTF were characterized for structural and phase analysis through X-ray diffraction shown in Figure 1. The XRD patterns for annealed samples reveal the characteristic well-crystallized pattern with a few signatures of secondary phase corresponding to pure Bi4Ti3O12 compound and alpha-Fe2O3. Figure 2 shows the EDX pattern of the pure sample confirming the chemical formation of the polycrystalline BNTF nanoparticles. Figure 3a,b shows the FE-SEM microstructure of the fracture surfaces of pristine and 5% doped Nd sample. Interestingly, with Nd doping, the densification is promoted in the grown nanoparticles. Figure 4a shows the FE-TEM micrograph with inset showing the average grain size plot and selective area electron diffraction pattern for the composition x = 0.0. The micrograph shows irregular-shaped highly agglomerated nanoparticles with an average grain size of 50 nm for the composition x = 0.05. The average crystallite sizes calculated through FE-TEM show a broad size distribution from 50 to 72 nm as shown in Figure 5. A high crystalline order is observed in the grown nanoparticles. Figure 4b shows lattice pattern for the composition x = 0.05 with inset showing the d spacing value of 0.240 Å. The d value obtained collaborated well with the value obtained from X-ray diffraction pattern.


Ferroelectric and magnetic properties of Nd-doped Bi4 - xFeTi3O12 nanoparticles prepared through the egg-white method.

Batoo KM, Labis JP, Sharma R, Singh M - Nanoscale Res Lett (2012)

Grain size distribution with composition.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3475093&req=5

Figure 5: Grain size distribution with composition.
Mentions: The powder samples of BNTF were characterized for structural and phase analysis through X-ray diffraction shown in Figure 1. The XRD patterns for annealed samples reveal the characteristic well-crystallized pattern with a few signatures of secondary phase corresponding to pure Bi4Ti3O12 compound and alpha-Fe2O3. Figure 2 shows the EDX pattern of the pure sample confirming the chemical formation of the polycrystalline BNTF nanoparticles. Figure 3a,b shows the FE-SEM microstructure of the fracture surfaces of pristine and 5% doped Nd sample. Interestingly, with Nd doping, the densification is promoted in the grown nanoparticles. Figure 4a shows the FE-TEM micrograph with inset showing the average grain size plot and selective area electron diffraction pattern for the composition x = 0.0. The micrograph shows irregular-shaped highly agglomerated nanoparticles with an average grain size of 50 nm for the composition x = 0.05. The average crystallite sizes calculated through FE-TEM show a broad size distribution from 50 to 72 nm as shown in Figure 5. A high crystalline order is observed in the grown nanoparticles. Figure 4b shows lattice pattern for the composition x = 0.05 with inset showing the d spacing value of 0.240 Å. The d value obtained collaborated well with the value obtained from X-ray diffraction pattern.

Bottom Line: Room temperature polarization-electric field (P-E) curves show that the samples are not saturated with maximum remanence polarization, Pr = 0.110 μC/cm2, and a relatively low coercive field, Ec = of 7.918 kV/cm, at an applied field of 1 kV/cm was observed for 5% Nd doping.The room temperature M-H hysteresis curve shows that the samples exhibit intrinsic antiferromagnetism with a weak ferromagnetism.These properties entitle the grown nanoparticles of BNFT as one of the few multiferroic materials that exhibit decent magnetization and electric polarization.

View Article: PubMed Central - HTML - PubMed

Affiliation: King Abdullah Institute for Nanotechnology, King Saud University, P,O, Box 2460, Riyadh, 1151, Saudi Arabia. khalid.mujasam@gmail.com.

ABSTRACT
Multiferroic behavior of Bi4 - xNdxFeTi3O12 (0.0 ≤ × ≤ 0.25, × = 0.05) ceramic nanoparticles prepared through the egg-white method was investigated. The dielectric properties of the samples show normal behavior and are explained in the light of space charge polarization. Room temperature polarization-electric field (P-E) curves show that the samples are not saturated with maximum remanence polarization, Pr = 0.110 μC/cm2, and a relatively low coercive field, Ec = of 7.918 kV/cm, at an applied field of 1 kV/cm was observed for 5% Nd doping. The room temperature M-H hysteresis curve shows that the samples exhibit intrinsic antiferromagnetism with a weak ferromagnetism. These properties entitle the grown nanoparticles of BNFT as one of the few multiferroic materials that exhibit decent magnetization and electric polarization.

No MeSH data available.