Limits...
Protocol: optimised electrophyiological analysis of intact guard cells from Arabidopsis.

Chen ZH, Eisenach C, Xu XQ, Hills A, Blatt MR - Plant Methods (2012)

Bottom Line: Genetic resources available for Arabidopsis thaliana make this species particularly attractive as a model for molecular genetic studies of guard cell homeostasis, transport and signalling, but this facility is not matched by accessible tools for quantitative analysis of transport in the intact cell.We have developed a reliable set of procedures for voltage clamp analysis of guard cells from Arabidopsis leaves.These procedures greatly simplify electrophysiological recordings, extending the duration of measurements and scope for analysis of the predominant K+ and anion channels of intact stomatal guard cells to that achieved previously in work with Vicia and tobacco guard cells.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK. Michael.Blatt@glasgow.ac.uk.

ABSTRACT
Genetic resources available for Arabidopsis thaliana make this species particularly attractive as a model for molecular genetic studies of guard cell homeostasis, transport and signalling, but this facility is not matched by accessible tools for quantitative analysis of transport in the intact cell. We have developed a reliable set of procedures for voltage clamp analysis of guard cells from Arabidopsis leaves. These procedures greatly simplify electrophysiological recordings, extending the duration of measurements and scope for analysis of the predominant K+ and anion channels of intact stomatal guard cells to that achieved previously in work with Vicia and tobacco guard cells.

No MeSH data available.


Related in: MedlinePlus

Growth and selection of Arabidopsis guard cells on epidermal peels. (A) Rosette of a plant after 19-d growth at the stage from which epidermal peels were taken for impalements. Plants were grown in individual flower pots, covered with a polyester mesh. True leaves are numbered in order of their appearance. Scale bar, 1 cm. (B, C) Epidermal peels taken from plants grown under long- and short-day periods, respectively. Note the higher density of stomata and the smaller size of the epidermal cells in (B). Scale bars, 30 μm. Arrows in (B) indicate examples of guard cell pairs favoured for impalement (D) Stomatal densities of plants grown under long-day (LD) and short-day (SD) (n = 46). The significance level is indicated with asterisks (P < 0.01).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3475070&req=5

Figure 1: Growth and selection of Arabidopsis guard cells on epidermal peels. (A) Rosette of a plant after 19-d growth at the stage from which epidermal peels were taken for impalements. Plants were grown in individual flower pots, covered with a polyester mesh. True leaves are numbered in order of their appearance. Scale bar, 1 cm. (B, C) Epidermal peels taken from plants grown under long- and short-day periods, respectively. Note the higher density of stomata and the smaller size of the epidermal cells in (B). Scale bars, 30 μm. Arrows in (B) indicate examples of guard cell pairs favoured for impalement (D) Stomatal densities of plants grown under long-day (LD) and short-day (SD) (n = 46). The significance level is indicated with asterisks (P < 0.01).

Mentions: 2. Sow seeds onto the nutrient-rich Levington F2 + S 3 compost (Coulders, Glasgow, UK) in 60 mm pots covered with polyester mesh (Remnant Kings, Glasgow, UK Figure 1A) to avoid soil contact of the abaxial leaf surface and soil-borne stress factors.


Protocol: optimised electrophyiological analysis of intact guard cells from Arabidopsis.

Chen ZH, Eisenach C, Xu XQ, Hills A, Blatt MR - Plant Methods (2012)

Growth and selection of Arabidopsis guard cells on epidermal peels. (A) Rosette of a plant after 19-d growth at the stage from which epidermal peels were taken for impalements. Plants were grown in individual flower pots, covered with a polyester mesh. True leaves are numbered in order of their appearance. Scale bar, 1 cm. (B, C) Epidermal peels taken from plants grown under long- and short-day periods, respectively. Note the higher density of stomata and the smaller size of the epidermal cells in (B). Scale bars, 30 μm. Arrows in (B) indicate examples of guard cell pairs favoured for impalement (D) Stomatal densities of plants grown under long-day (LD) and short-day (SD) (n = 46). The significance level is indicated with asterisks (P < 0.01).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3475070&req=5

Figure 1: Growth and selection of Arabidopsis guard cells on epidermal peels. (A) Rosette of a plant after 19-d growth at the stage from which epidermal peels were taken for impalements. Plants were grown in individual flower pots, covered with a polyester mesh. True leaves are numbered in order of their appearance. Scale bar, 1 cm. (B, C) Epidermal peels taken from plants grown under long- and short-day periods, respectively. Note the higher density of stomata and the smaller size of the epidermal cells in (B). Scale bars, 30 μm. Arrows in (B) indicate examples of guard cell pairs favoured for impalement (D) Stomatal densities of plants grown under long-day (LD) and short-day (SD) (n = 46). The significance level is indicated with asterisks (P < 0.01).
Mentions: 2. Sow seeds onto the nutrient-rich Levington F2 + S 3 compost (Coulders, Glasgow, UK) in 60 mm pots covered with polyester mesh (Remnant Kings, Glasgow, UK Figure 1A) to avoid soil contact of the abaxial leaf surface and soil-borne stress factors.

Bottom Line: Genetic resources available for Arabidopsis thaliana make this species particularly attractive as a model for molecular genetic studies of guard cell homeostasis, transport and signalling, but this facility is not matched by accessible tools for quantitative analysis of transport in the intact cell.We have developed a reliable set of procedures for voltage clamp analysis of guard cells from Arabidopsis leaves.These procedures greatly simplify electrophysiological recordings, extending the duration of measurements and scope for analysis of the predominant K+ and anion channels of intact stomatal guard cells to that achieved previously in work with Vicia and tobacco guard cells.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK. Michael.Blatt@glasgow.ac.uk.

ABSTRACT
Genetic resources available for Arabidopsis thaliana make this species particularly attractive as a model for molecular genetic studies of guard cell homeostasis, transport and signalling, but this facility is not matched by accessible tools for quantitative analysis of transport in the intact cell. We have developed a reliable set of procedures for voltage clamp analysis of guard cells from Arabidopsis leaves. These procedures greatly simplify electrophysiological recordings, extending the duration of measurements and scope for analysis of the predominant K+ and anion channels of intact stomatal guard cells to that achieved previously in work with Vicia and tobacco guard cells.

No MeSH data available.


Related in: MedlinePlus