Limits...
Novel mouse mammary cell lines for in vivo bioluminescence imaging (BLI) of bone metastasis.

Bolin C, Sutherland C, Tawara K, Moselhy J, Jorcyk CL - Biol Proced Online (2012)

Bottom Line: The 4 T1.2 luc3 cell line was found to closely model the sites of metastases seen in human patients including lung, liver, and bone.High osteolytic activity of the 4 T1.2 luc3 cells in vivo in the bone microenvironment was also detected.The engineered 4 T1.2 luc3 and 66c14 luc2 cell lines described in this study are valuable tools for studying the cellular events moderating the metastasis of breast tumor cells to bone.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Biological Sciences, Boise State University, Boise, ID, USA. cjorcyk@boisestate.edu.

ABSTRACT

Background: Tumor cell lines that can be tracked in vivo during tumorigenesis and metastasis provide vital tools for studying the specific cellular mechanisms that mediate these processes as well as investigating therapeutic targets to inhibit them. The goal of this study was to engineer imageable mouse mammary tumor cell lines with discrete propensities to metastasize to bone in vivo. Two novel luciferase expressing cell lines were developed and characterized for use in the study of breast cancer metastasis to bone in a syngeneic mouse model.

Results: The 4 T1.2 luc3 and 66c14 luc2 cell lines were shown to have high levels of bioluminescence intensity in vitro and in vivo after orthotopic injection into mouse mammary fat pads. The 4 T1.2 luc3 cell line was found to closely model the sites of metastases seen in human patients including lung, liver, and bone. Specifically, 4 T1.2 luc3 cells demonstrated a high incidence of metastasis to spine, with an ex-vivo BLI intensity three orders of magnitude above the commercially available 4 T1 luc2 cells. 66c14 luc2 cells also demonstrated metastasis to spine, which was lower than that of 4 T1.2 luc3 cells but higher than 4 T1 luc2 cells, in addition to previously unreported metastases in the liver. High osteolytic activity of the 4 T1.2 luc3 cells in vivo in the bone microenvironment was also detected.

Conclusions: The engineered 4 T1.2 luc3 and 66c14 luc2 cell lines described in this study are valuable tools for studying the cellular events moderating the metastasis of breast tumor cells to bone.

No MeSH data available.


Related in: MedlinePlus

Bioluminescence intensities of 66c14 luc- and 4 T1.2 luc-expressing cell lines in vitro .Image analysis show bioluminescence from clonal populations of (A) 66c14 luc(1–5) cells and (B) 4 T1.2 luc(1–5) cells. Green bars highlight 4 T1.2 luc3 and 66c14 luc2 clones with high mean bioluminescence values. Data is expressed as photons/sec/cell (mean ± std dev, n = 4 ) calculated by comparing each cell line to known values of HeLa-Luc cells (350 photons/sec/cell; see Materials and Methods).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3473320&req=5

Figure 1: Bioluminescence intensities of 66c14 luc- and 4 T1.2 luc-expressing cell lines in vitro .Image analysis show bioluminescence from clonal populations of (A) 66c14 luc(1–5) cells and (B) 4 T1.2 luc(1–5) cells. Green bars highlight 4 T1.2 luc3 and 66c14 luc2 clones with high mean bioluminescence values. Data is expressed as photons/sec/cell (mean ± std dev, n = 4 ) calculated by comparing each cell line to known values of HeLa-Luc cells (350 photons/sec/cell; see Materials and Methods).

Mentions: Of the five different 66c14 luc lines produced, 66c14 luc5 cells produced the highest bioluminescence intensity, 1,019 photons/sec/cell, and the 66c14 luc2 cells produced the second highest, 945 photons/sec/cell (Figure 1A, green bar). Of the five different 4 T1.2 luc lines produced, 4 T1.2 luc3 cells produced the highest level of bioluminescence intensity, at 2,070 photons/sec/cell (Figure 1B, green bar). Two cell lines, 66c14 luc1 (105 photons/sec/cell) and 4 T1.2 luc5 (150 photons/sec/cell), had bioluminescence intensities below the minimum detection limit (MDL) for in vivo imaging (~300 photos/sec/cell; Caliper Life Sciences) and were not utilized in the following in vivo studies. The other eight luc-expressing cell lines generated in 4 T1.2 and 66c14 cells were further assessed for in vivo BLI based on in vitro bioluminescent intensities at least twice the in vivo MDL.


Novel mouse mammary cell lines for in vivo bioluminescence imaging (BLI) of bone metastasis.

Bolin C, Sutherland C, Tawara K, Moselhy J, Jorcyk CL - Biol Proced Online (2012)

Bioluminescence intensities of 66c14 luc- and 4 T1.2 luc-expressing cell lines in vitro .Image analysis show bioluminescence from clonal populations of (A) 66c14 luc(1–5) cells and (B) 4 T1.2 luc(1–5) cells. Green bars highlight 4 T1.2 luc3 and 66c14 luc2 clones with high mean bioluminescence values. Data is expressed as photons/sec/cell (mean ± std dev, n = 4 ) calculated by comparing each cell line to known values of HeLa-Luc cells (350 photons/sec/cell; see Materials and Methods).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3473320&req=5

Figure 1: Bioluminescence intensities of 66c14 luc- and 4 T1.2 luc-expressing cell lines in vitro .Image analysis show bioluminescence from clonal populations of (A) 66c14 luc(1–5) cells and (B) 4 T1.2 luc(1–5) cells. Green bars highlight 4 T1.2 luc3 and 66c14 luc2 clones with high mean bioluminescence values. Data is expressed as photons/sec/cell (mean ± std dev, n = 4 ) calculated by comparing each cell line to known values of HeLa-Luc cells (350 photons/sec/cell; see Materials and Methods).
Mentions: Of the five different 66c14 luc lines produced, 66c14 luc5 cells produced the highest bioluminescence intensity, 1,019 photons/sec/cell, and the 66c14 luc2 cells produced the second highest, 945 photons/sec/cell (Figure 1A, green bar). Of the five different 4 T1.2 luc lines produced, 4 T1.2 luc3 cells produced the highest level of bioluminescence intensity, at 2,070 photons/sec/cell (Figure 1B, green bar). Two cell lines, 66c14 luc1 (105 photons/sec/cell) and 4 T1.2 luc5 (150 photons/sec/cell), had bioluminescence intensities below the minimum detection limit (MDL) for in vivo imaging (~300 photos/sec/cell; Caliper Life Sciences) and were not utilized in the following in vivo studies. The other eight luc-expressing cell lines generated in 4 T1.2 and 66c14 cells were further assessed for in vivo BLI based on in vitro bioluminescent intensities at least twice the in vivo MDL.

Bottom Line: The 4 T1.2 luc3 cell line was found to closely model the sites of metastases seen in human patients including lung, liver, and bone.High osteolytic activity of the 4 T1.2 luc3 cells in vivo in the bone microenvironment was also detected.The engineered 4 T1.2 luc3 and 66c14 luc2 cell lines described in this study are valuable tools for studying the cellular events moderating the metastasis of breast tumor cells to bone.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Biological Sciences, Boise State University, Boise, ID, USA. cjorcyk@boisestate.edu.

ABSTRACT

Background: Tumor cell lines that can be tracked in vivo during tumorigenesis and metastasis provide vital tools for studying the specific cellular mechanisms that mediate these processes as well as investigating therapeutic targets to inhibit them. The goal of this study was to engineer imageable mouse mammary tumor cell lines with discrete propensities to metastasize to bone in vivo. Two novel luciferase expressing cell lines were developed and characterized for use in the study of breast cancer metastasis to bone in a syngeneic mouse model.

Results: The 4 T1.2 luc3 and 66c14 luc2 cell lines were shown to have high levels of bioluminescence intensity in vitro and in vivo after orthotopic injection into mouse mammary fat pads. The 4 T1.2 luc3 cell line was found to closely model the sites of metastases seen in human patients including lung, liver, and bone. Specifically, 4 T1.2 luc3 cells demonstrated a high incidence of metastasis to spine, with an ex-vivo BLI intensity three orders of magnitude above the commercially available 4 T1 luc2 cells. 66c14 luc2 cells also demonstrated metastasis to spine, which was lower than that of 4 T1.2 luc3 cells but higher than 4 T1 luc2 cells, in addition to previously unreported metastases in the liver. High osteolytic activity of the 4 T1.2 luc3 cells in vivo in the bone microenvironment was also detected.

Conclusions: The engineered 4 T1.2 luc3 and 66c14 luc2 cell lines described in this study are valuable tools for studying the cellular events moderating the metastasis of breast tumor cells to bone.

No MeSH data available.


Related in: MedlinePlus