Limits...
Regulatory network operations in the Pathway Tools software.

Paley SM, Latendresse M, Karp PD - BMC Bioinformatics (2012)

Bottom Line: We introduce a novel type of enrichment analysis that asks whether a gene-expression dataset is over-represented for known regulators.We present algorithms for ranking the degree of regulatory influence of genes, and for computing the net positive and negative regulatory influences on a gene.Pathway Tools provides a comprehensive environment for manipulating molecular regulatory interactions that integrates regulatory data with an organism's genome and metabolic network.

View Article: PubMed Central - HTML - PubMed

Affiliation: Bioinformatics Research Group, SRI International 333 Ravenswood Ave, Menlo Park, CA 94025, USA.

ABSTRACT

Background: Biologists are elucidating complex collections of genetic regulatory data for multiple organisms. Software is needed for such regulatory network data.

Results: The Pathway Tools software supports storage and manipulation of regulatory information through a variety of strategies. The Pathway Tools regulation ontology captures transcriptional and translational regulation, substrate-level regulation of enzyme activity, post-translational modifications, and regulatory pathways. Regulatory visualizations include a novel diagram that summarizes all regulatory influences on a gene; a transcription-unit diagram, and an interactive visualization of a full transcriptional regulatory network that can be painted with gene expression data to probe correlations between gene expression and regulatory mechanisms. We introduce a novel type of enrichment analysis that asks whether a gene-expression dataset is over-represented for known regulators. We present algorithms for ranking the degree of regulatory influence of genes, and for computing the net positive and negative regulatory influences on a gene.

Conclusions: Pathway Tools provides a comprehensive environment for manipulating molecular regulatory interactions that integrates regulatory data with an organism's genome and metabolic network. Curated collections of regulatory data authored using Pathway Tools are available for Escherichia coli, Bacillus subtilis, and Shewanella oneidensis.

Show MeSH

Related in: MedlinePlus

The Regulation class hierarchy.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3473263&req=5

Figure 1: The Regulation class hierarchy.

Mentions: The Pathway Tools schema is organized into a class hierarchy. Each class has a set of slots that define the attributes and relationships of instances of those classes. Classes inherit slots from their parent classes. Most forms of regulation are collected under the class Regulation, which represents a single molecular regulatory interaction. The Regulation class is a root class in the ontology, that is, it has no parents. Figure 1 shows the tree of subclasses under the Regulation class.


Regulatory network operations in the Pathway Tools software.

Paley SM, Latendresse M, Karp PD - BMC Bioinformatics (2012)

The Regulation class hierarchy.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3473263&req=5

Figure 1: The Regulation class hierarchy.
Mentions: The Pathway Tools schema is organized into a class hierarchy. Each class has a set of slots that define the attributes and relationships of instances of those classes. Classes inherit slots from their parent classes. Most forms of regulation are collected under the class Regulation, which represents a single molecular regulatory interaction. The Regulation class is a root class in the ontology, that is, it has no parents. Figure 1 shows the tree of subclasses under the Regulation class.

Bottom Line: We introduce a novel type of enrichment analysis that asks whether a gene-expression dataset is over-represented for known regulators.We present algorithms for ranking the degree of regulatory influence of genes, and for computing the net positive and negative regulatory influences on a gene.Pathway Tools provides a comprehensive environment for manipulating molecular regulatory interactions that integrates regulatory data with an organism's genome and metabolic network.

View Article: PubMed Central - HTML - PubMed

Affiliation: Bioinformatics Research Group, SRI International 333 Ravenswood Ave, Menlo Park, CA 94025, USA.

ABSTRACT

Background: Biologists are elucidating complex collections of genetic regulatory data for multiple organisms. Software is needed for such regulatory network data.

Results: The Pathway Tools software supports storage and manipulation of regulatory information through a variety of strategies. The Pathway Tools regulation ontology captures transcriptional and translational regulation, substrate-level regulation of enzyme activity, post-translational modifications, and regulatory pathways. Regulatory visualizations include a novel diagram that summarizes all regulatory influences on a gene; a transcription-unit diagram, and an interactive visualization of a full transcriptional regulatory network that can be painted with gene expression data to probe correlations between gene expression and regulatory mechanisms. We introduce a novel type of enrichment analysis that asks whether a gene-expression dataset is over-represented for known regulators. We present algorithms for ranking the degree of regulatory influence of genes, and for computing the net positive and negative regulatory influences on a gene.

Conclusions: Pathway Tools provides a comprehensive environment for manipulating molecular regulatory interactions that integrates regulatory data with an organism's genome and metabolic network. Curated collections of regulatory data authored using Pathway Tools are available for Escherichia coli, Bacillus subtilis, and Shewanella oneidensis.

Show MeSH
Related in: MedlinePlus