Limits...
Open evaluation: a vision for entirely transparent post-publication peer review and rating for science.

Kriegeskorte N - Front Comput Neurosci (2012)

Bottom Line: Complex PEFs will use advanced statistical techniques to infer the quality of a paper.The continual refinement of PEFs in response to attempts by individuals to influence evaluations in their own favor will make the system ungameable.OA and OE together have the power to revolutionize scientific publishing and usher in a new culture of transparency, constructive criticism, and collaboration.

View Article: PubMed Central - PubMed

Affiliation: Medical Research Council, Cognition and Brain Sciences Unit Cambridge, UK.

ABSTRACT
The two major functions of a scientific publishing system are to provide access to and evaluation of scientific papers. While open access (OA) is becoming a reality, open evaluation (OE), the other side of the coin, has received less attention. Evaluation steers the attention of the scientific community and thus the very course of science. It also influences the use of scientific findings in public policy. The current system of scientific publishing provides only journal prestige as an indication of the quality of new papers and relies on a non-transparent and noisy pre-publication peer-review process, which delays publication by many months on average. Here I propose an OE system, in which papers are evaluated post-publication in an ongoing fashion by means of open peer review and rating. Through signed ratings and reviews, scientists steer the attention of their field and build their reputation. Reviewers are motivated to be objective, because low-quality or self-serving signed evaluations will negatively impact their reputation. A core feature of this proposal is a division of powers between the accumulation of evaluative evidence and the analysis of this evidence by paper evaluation functions (PEFs). PEFs can be freely defined by individuals or groups (e.g., scientific societies) and provide a plurality of perspectives on the scientific literature. Simple PEFs will use averages of ratings, weighting reviewers (e.g., by H-index), and rating scales (e.g., by relevance to a decision process) in different ways. Complex PEFs will use advanced statistical techniques to infer the quality of a paper. Papers with initially promising ratings will be more deeply evaluated. The continual refinement of PEFs in response to attempts by individuals to influence evaluations in their own favor will make the system ungameable. OA and OE together have the power to revolutionize scientific publishing and usher in a new culture of transparency, constructive criticism, and collaboration.

No MeSH data available.


Fleeting online science and the crystallized scientific record. Much of online science is fleeting. For example, a link to a blog post becomes obsolete when the owner removes the post. This is as it should be. Research blogs serve as science’s short-term memory. However, science also needs a long-term memory, a crystallized and permanently citable historical record. This function is served by the peer-reviewed literature. Note that fleeting online science and the crystallized record interact intensely as bloggers refer to papers and blogs inspire new studies that later become part of the scientific record. However, while blogs link to other blogs (gray arrows) and cite papers (black downward arrows), scientific papers mainly cite other scientific papers (black arrows), because links to online science are less dependable in the long term.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3473231&req=5

Figure 10: Fleeting online science and the crystallized scientific record. Much of online science is fleeting. For example, a link to a blog post becomes obsolete when the owner removes the post. This is as it should be. Research blogs serve as science’s short-term memory. However, science also needs a long-term memory, a crystallized and permanently citable historical record. This function is served by the peer-reviewed literature. Note that fleeting online science and the crystallized record interact intensely as bloggers refer to papers and blogs inspire new studies that later become part of the scientific record. However, while blogs link to other blogs (gray arrows) and cite papers (black downward arrows), scientific papers mainly cite other scientific papers (black arrows), because links to online science are less dependable in the long term.

Mentions: Blogs are science’s short-term memory (Figure 10). They enable more intuitive and divergent reasoning. The crystallized literature is science’s long-term memory, which enables more analytical and convergent reasoning. Crystallized scientific publications include papers and reviews. Reviews are crystallized publications that serve mainly to evaluate one or several other crystallized publications. Crystallized publications are digitally authenticated documents that reference other scientific publications.


Open evaluation: a vision for entirely transparent post-publication peer review and rating for science.

Kriegeskorte N - Front Comput Neurosci (2012)

Fleeting online science and the crystallized scientific record. Much of online science is fleeting. For example, a link to a blog post becomes obsolete when the owner removes the post. This is as it should be. Research blogs serve as science’s short-term memory. However, science also needs a long-term memory, a crystallized and permanently citable historical record. This function is served by the peer-reviewed literature. Note that fleeting online science and the crystallized record interact intensely as bloggers refer to papers and blogs inspire new studies that later become part of the scientific record. However, while blogs link to other blogs (gray arrows) and cite papers (black downward arrows), scientific papers mainly cite other scientific papers (black arrows), because links to online science are less dependable in the long term.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3473231&req=5

Figure 10: Fleeting online science and the crystallized scientific record. Much of online science is fleeting. For example, a link to a blog post becomes obsolete when the owner removes the post. This is as it should be. Research blogs serve as science’s short-term memory. However, science also needs a long-term memory, a crystallized and permanently citable historical record. This function is served by the peer-reviewed literature. Note that fleeting online science and the crystallized record interact intensely as bloggers refer to papers and blogs inspire new studies that later become part of the scientific record. However, while blogs link to other blogs (gray arrows) and cite papers (black downward arrows), scientific papers mainly cite other scientific papers (black arrows), because links to online science are less dependable in the long term.
Mentions: Blogs are science’s short-term memory (Figure 10). They enable more intuitive and divergent reasoning. The crystallized literature is science’s long-term memory, which enables more analytical and convergent reasoning. Crystallized scientific publications include papers and reviews. Reviews are crystallized publications that serve mainly to evaluate one or several other crystallized publications. Crystallized publications are digitally authenticated documents that reference other scientific publications.

Bottom Line: Complex PEFs will use advanced statistical techniques to infer the quality of a paper.The continual refinement of PEFs in response to attempts by individuals to influence evaluations in their own favor will make the system ungameable.OA and OE together have the power to revolutionize scientific publishing and usher in a new culture of transparency, constructive criticism, and collaboration.

View Article: PubMed Central - PubMed

Affiliation: Medical Research Council, Cognition and Brain Sciences Unit Cambridge, UK.

ABSTRACT
The two major functions of a scientific publishing system are to provide access to and evaluation of scientific papers. While open access (OA) is becoming a reality, open evaluation (OE), the other side of the coin, has received less attention. Evaluation steers the attention of the scientific community and thus the very course of science. It also influences the use of scientific findings in public policy. The current system of scientific publishing provides only journal prestige as an indication of the quality of new papers and relies on a non-transparent and noisy pre-publication peer-review process, which delays publication by many months on average. Here I propose an OE system, in which papers are evaluated post-publication in an ongoing fashion by means of open peer review and rating. Through signed ratings and reviews, scientists steer the attention of their field and build their reputation. Reviewers are motivated to be objective, because low-quality or self-serving signed evaluations will negatively impact their reputation. A core feature of this proposal is a division of powers between the accumulation of evaluative evidence and the analysis of this evidence by paper evaluation functions (PEFs). PEFs can be freely defined by individuals or groups (e.g., scientific societies) and provide a plurality of perspectives on the scientific literature. Simple PEFs will use averages of ratings, weighting reviewers (e.g., by H-index), and rating scales (e.g., by relevance to a decision process) in different ways. Complex PEFs will use advanced statistical techniques to infer the quality of a paper. Papers with initially promising ratings will be more deeply evaluated. The continual refinement of PEFs in response to attempts by individuals to influence evaluations in their own favor will make the system ungameable. OA and OE together have the power to revolutionize scientific publishing and usher in a new culture of transparency, constructive criticism, and collaboration.

No MeSH data available.