Limits...
Effect of MWCNT surface and chemical modification on in vitro cellular response.

Fraczek-Szczypta A, Menaszek E, Syeda TB, Misra A, Alavijeh M, Adu J, Blazewicz S - J Nanopart Res (2012)

Bottom Line: The results demonstrate that the way of CNT preparation prior to biological tests has a fundamental impact on their behavior, cell viability and the nature of cell-nanotube interaction.Chemical functionalisation of CNTs in an acidic ambient (MWCNT-Fs) facilitates interaction with cells by two possible mechanisms, namely, endocytosis/phagocytosis and by energy-independent passive process.A possible explanation of such a phenomenon is the presence of MWCNT's agglomerates surrounded by numerous cells releasing toxic substances.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Al Mickiewicza 30, 30-059 Kraków, Poland.

ABSTRACT
The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs with diameter in the range of 10-30 nm) before and after chemical surface functionalisation on macrophages response. The study has shown that the detailed analysis of the physicochemical properties of this particular form of carbon nanomaterial is a crucial issue to interpret properly its impact on the cellular response. Effects of carbon nanotubes (CNTs) characteristics, including purity, dispersity, chemistry and dimension upon the nature of the cell environment-material interaction were investigated. Various techniques involving electron microscopy (SEM, TEM), infrared spectroscopy (FTIR), inductively coupled plasma optical emission spectrometry, X-ray photoelectron spectroscopy have been employed to evaluate the physicochemical properties of the materials. The results demonstrate that the way of CNT preparation prior to biological tests has a fundamental impact on their behavior, cell viability and the nature of cell-nanotube interaction. Chemical functionalisation of CNTs in an acidic ambient (MWCNT-Fs) facilitates interaction with cells by two possible mechanisms, namely, endocytosis/phagocytosis and by energy-independent passive process. The results indicate that MWCNT-F in macrophages may decrease the cell proliferation process by interfering with the mitotic apparatus without negative consequences on cell viability. On the contrary, the as-prepared MWCNTs, without any surface treatment produce the least reduction in cell proliferation with reference to control, and the viability of cells exposed to this sample was substantially reduced with respect to control. A possible explanation of such a phenomenon is the presence of MWCNT's agglomerates surrounded by numerous cells releasing toxic substances.

No MeSH data available.


Related in: MedlinePlus

Control sample—macrophages without CNTs
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3473194&req=5

Fig13: Control sample—macrophages without CNTs

Mentions: As observed in Fig. 10b, MWCNT-F created the smallest aggregates with a regular shape because the majority are located in cells, which are more visible in Figs. 11b and 12b. The MWCNTs and MWCNT-NHs dispersed poorly in culture medium (Fig. 10a, c), which is especially noticeable for CNTs without chemical modification. Large agglomerates of nanotubes with strange shapes were observed for MWCNT (Fig. 11a). The existence of such agglomerates caused a different mechanism of interaction between the cells and CNT material. In this case, the likely phagocytosis process of nanotubes or direct transport through macrophage cells membrane was hindered. Moreover, for MWCNTs agglomerates the frustrated phagocytosis process was observed to be similar to that taking place in both in vivo and in vitro conditions (Fraczek et al. 2008; Castro et al. 2009; Shvedova et al. 2012; Cheng et al. 2009). When macrophage phagocytosis was hindered, giant cells surrounding the materials were observed (Fig. 12a). The morphology of macrophages without CNTs is presented in Fig. 13.Fig. 11


Effect of MWCNT surface and chemical modification on in vitro cellular response.

Fraczek-Szczypta A, Menaszek E, Syeda TB, Misra A, Alavijeh M, Adu J, Blazewicz S - J Nanopart Res (2012)

Control sample—macrophages without CNTs
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3473194&req=5

Fig13: Control sample—macrophages without CNTs
Mentions: As observed in Fig. 10b, MWCNT-F created the smallest aggregates with a regular shape because the majority are located in cells, which are more visible in Figs. 11b and 12b. The MWCNTs and MWCNT-NHs dispersed poorly in culture medium (Fig. 10a, c), which is especially noticeable for CNTs without chemical modification. Large agglomerates of nanotubes with strange shapes were observed for MWCNT (Fig. 11a). The existence of such agglomerates caused a different mechanism of interaction between the cells and CNT material. In this case, the likely phagocytosis process of nanotubes or direct transport through macrophage cells membrane was hindered. Moreover, for MWCNTs agglomerates the frustrated phagocytosis process was observed to be similar to that taking place in both in vivo and in vitro conditions (Fraczek et al. 2008; Castro et al. 2009; Shvedova et al. 2012; Cheng et al. 2009). When macrophage phagocytosis was hindered, giant cells surrounding the materials were observed (Fig. 12a). The morphology of macrophages without CNTs is presented in Fig. 13.Fig. 11

Bottom Line: The results demonstrate that the way of CNT preparation prior to biological tests has a fundamental impact on their behavior, cell viability and the nature of cell-nanotube interaction.Chemical functionalisation of CNTs in an acidic ambient (MWCNT-Fs) facilitates interaction with cells by two possible mechanisms, namely, endocytosis/phagocytosis and by energy-independent passive process.A possible explanation of such a phenomenon is the presence of MWCNT's agglomerates surrounded by numerous cells releasing toxic substances.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Al Mickiewicza 30, 30-059 Kraków, Poland.

ABSTRACT
The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs with diameter in the range of 10-30 nm) before and after chemical surface functionalisation on macrophages response. The study has shown that the detailed analysis of the physicochemical properties of this particular form of carbon nanomaterial is a crucial issue to interpret properly its impact on the cellular response. Effects of carbon nanotubes (CNTs) characteristics, including purity, dispersity, chemistry and dimension upon the nature of the cell environment-material interaction were investigated. Various techniques involving electron microscopy (SEM, TEM), infrared spectroscopy (FTIR), inductively coupled plasma optical emission spectrometry, X-ray photoelectron spectroscopy have been employed to evaluate the physicochemical properties of the materials. The results demonstrate that the way of CNT preparation prior to biological tests has a fundamental impact on their behavior, cell viability and the nature of cell-nanotube interaction. Chemical functionalisation of CNTs in an acidic ambient (MWCNT-Fs) facilitates interaction with cells by two possible mechanisms, namely, endocytosis/phagocytosis and by energy-independent passive process. The results indicate that MWCNT-F in macrophages may decrease the cell proliferation process by interfering with the mitotic apparatus without negative consequences on cell viability. On the contrary, the as-prepared MWCNTs, without any surface treatment produce the least reduction in cell proliferation with reference to control, and the viability of cells exposed to this sample was substantially reduced with respect to control. A possible explanation of such a phenomenon is the presence of MWCNT's agglomerates surrounded by numerous cells releasing toxic substances.

No MeSH data available.


Related in: MedlinePlus