Limits...
Magnetic and luminescent hybrid nanomaterial based on Fe(3)O(4) nanocrystals and GdPO(4):Eu(3+) nanoneedles.

Runowski M, Grzyb T, Lis S - J Nanopart Res (2012)

Bottom Line: A magnetic phase was synthesized as a core/shell type composite.Also, the luminescent phase can move simultaneously with magnetite due to a "trapping" effect.GRAPHICAL ABSTRACT:

View Article: PubMed Central - PubMed

Affiliation: Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland.

ABSTRACT
A bifunctional hybrid nanomaterial, which can show magnetic and luminescent properties, was obtained. A magnetic phase was synthesized as a core/shell type composite. Nanocrystalline magnetite, Fe(3)O(4) was used as the core and was encapsulated in a silica shell. The luminescent phase was GdPO(4) doped with Eu(3+) ions, as the emitter. The investigated materials were synthesized using a coprecipitation method. Encapsulated Fe(3)O(4) was "trapped" in a nano-scaffold composed of GdPO(4) crystalline nanoneedles. When an external magnetic field was applied, this hybrid composite was attracted in one direction. Also, the luminescent phase can move simultaneously with magnetite due to a "trapping" effect. The structure and morphology of the obtained nanocomposites were examined with the use of transmission electron microscopy and X-ray powder diffraction. Spectroscopic properties of the Eu(3+)-doped nanomaterials were studied by measuring their excitation and emission spectra as well as their luminescence decay times. GRAPHICAL ABSTRACT:

No MeSH data available.


Related in: MedlinePlus

Excitation spectra of the Fe3O4/SiO2–GdPO4:Eu3+ hybrid material registered at room temperature
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3473191&req=5

Fig5: Excitation spectra of the Fe3O4/SiO2–GdPO4:Eu3+ hybrid material registered at room temperature

Mentions: Excitation and emission spectra are shown in Figs. 5, 6. Two concentrations of the dopant, Eu3+ ions, were used as emission activators. The prepared compound can be excited by UV radiation at the optimal wavelength of λex = 245 nm. This wavelength corresponds to the maximum of the wide band, which is connected with charge transfer between the O2− and Eu3+ ions. Less intense peaks around 270 and 390 nm are due to the energy transfer from Gd3+ to Eu3+ and to the f–f transitions in the Eu3+ ions, respectively.Fig. 5


Magnetic and luminescent hybrid nanomaterial based on Fe(3)O(4) nanocrystals and GdPO(4):Eu(3+) nanoneedles.

Runowski M, Grzyb T, Lis S - J Nanopart Res (2012)

Excitation spectra of the Fe3O4/SiO2–GdPO4:Eu3+ hybrid material registered at room temperature
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3473191&req=5

Fig5: Excitation spectra of the Fe3O4/SiO2–GdPO4:Eu3+ hybrid material registered at room temperature
Mentions: Excitation and emission spectra are shown in Figs. 5, 6. Two concentrations of the dopant, Eu3+ ions, were used as emission activators. The prepared compound can be excited by UV radiation at the optimal wavelength of λex = 245 nm. This wavelength corresponds to the maximum of the wide band, which is connected with charge transfer between the O2− and Eu3+ ions. Less intense peaks around 270 and 390 nm are due to the energy transfer from Gd3+ to Eu3+ and to the f–f transitions in the Eu3+ ions, respectively.Fig. 5

Bottom Line: A magnetic phase was synthesized as a core/shell type composite.Also, the luminescent phase can move simultaneously with magnetite due to a "trapping" effect.GRAPHICAL ABSTRACT:

View Article: PubMed Central - PubMed

Affiliation: Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland.

ABSTRACT
A bifunctional hybrid nanomaterial, which can show magnetic and luminescent properties, was obtained. A magnetic phase was synthesized as a core/shell type composite. Nanocrystalline magnetite, Fe(3)O(4) was used as the core and was encapsulated in a silica shell. The luminescent phase was GdPO(4) doped with Eu(3+) ions, as the emitter. The investigated materials were synthesized using a coprecipitation method. Encapsulated Fe(3)O(4) was "trapped" in a nano-scaffold composed of GdPO(4) crystalline nanoneedles. When an external magnetic field was applied, this hybrid composite was attracted in one direction. Also, the luminescent phase can move simultaneously with magnetite due to a "trapping" effect. The structure and morphology of the obtained nanocomposites were examined with the use of transmission electron microscopy and X-ray powder diffraction. Spectroscopic properties of the Eu(3+)-doped nanomaterials were studied by measuring their excitation and emission spectra as well as their luminescence decay times. GRAPHICAL ABSTRACT:

No MeSH data available.


Related in: MedlinePlus