Limits...
Evaluation of poly(amidoamine) dendrimers as potential carriers of iminodiacetic derivatives using solubility studies and 2D-NOESY NMR spectroscopy.

Markowicz M, Szymański P, Ciszewski M, Kłys A, Mikiciuk-Olasik E - J Biol Phys (2012)

Bottom Line: We reported that PAMAM dendrimers contribute to significant solubility enhancement of iminodiacetic acid analogues.The 2D-NOESY analysis revealed interactions between the primary amine groups of PAMAM dendrimers and the analogues of iminodiacetic acid.The results of solubility studies together with (1)H NMR and 2D-NOESY experiments suggest that the interactions between PAMAM dendrimers of generation 1-4 and derivatives of iminodiacetic acid are based on electrostatic interactions and internal encapsulation.Electronic supplementary material The online version of this article (doi:10.1007/s10867-012-9277-5) contains supplementary material, which is available to authorized users.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutical Chemistry and Drug Analysis, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.

ABSTRACT
The interactions between dendrimers and different types of drugs are nowadays one of the most actively investigated areas of the pharmaceutical sciences. The interactions between dendrimers and drugs can be divided into: internal encapsulation, external electrostatic interaction, and covalent conjugation. In the present study, we investigated the potential of poly(amidoamine) (PAMAM) dendrimers for solubility of four iminodiacetic acid derivatives. We reported that PAMAM dendrimers contribute to significant solubility enhancement of iminodiacetic acid analogues. The nature of the dendrimer-drug complexes was investigated by (1)H NMR and 2D-NOESY spectroscopy. The (1)H NMR analysis proved that the water-soluble supramolecular structure of the complex was formed on the basis of ionic interactions between terminal amine groups of dendrimers and carboxyl groups of drug molecules, as well as internal encapsulation. The 2D-NOESY analysis revealed interactions between the primary amine groups of PAMAM dendrimers and the analogues of iminodiacetic acid. The results of solubility studies together with (1)H NMR and 2D-NOESY experiments suggest that the interactions between PAMAM dendrimers of generation 1-4 and derivatives of iminodiacetic acid are based on electrostatic interactions and internal encapsulation.Electronic supplementary material The online version of this article (doi:10.1007/s10867-012-9277-5) contains supplementary material, which is available to authorized users.

No MeSH data available.


Drug solubility in the presence of 10 mg/ml PAMAM dendrimers, generation 1.0
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3473130&req=5

Fig1: Drug solubility in the presence of 10 mg/ml PAMAM dendrimers, generation 1.0

Mentions: The effect of G1 PAMAM dendrimer concentration on solubility of four analogues of iminodiacetic acid was measured at 25°C by means of UV-Vis spectroscopy, and the results are presented in Fig. 1. It might be observed that the extremely low water solubility of compound 1 has been significantly improved by G1 PAMAM dendrimers (a 75-fold increase in solubility in 10 mg/ml PAMAM dendrimer solutions compared with that in double-distilled water). Dendrimers contributed to 29-, 10-, and 16-fold increases in solubility of compounds 2, 3, and 4, respectively. However, on the basis of the result of this study, we cannot confirm that PAMAM 1.0 dendrimers contribute to greater solubility enhancement of those compounds which are less soluble in water than those better soluble.Fig. 1


Evaluation of poly(amidoamine) dendrimers as potential carriers of iminodiacetic derivatives using solubility studies and 2D-NOESY NMR spectroscopy.

Markowicz M, Szymański P, Ciszewski M, Kłys A, Mikiciuk-Olasik E - J Biol Phys (2012)

Drug solubility in the presence of 10 mg/ml PAMAM dendrimers, generation 1.0
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3473130&req=5

Fig1: Drug solubility in the presence of 10 mg/ml PAMAM dendrimers, generation 1.0
Mentions: The effect of G1 PAMAM dendrimer concentration on solubility of four analogues of iminodiacetic acid was measured at 25°C by means of UV-Vis spectroscopy, and the results are presented in Fig. 1. It might be observed that the extremely low water solubility of compound 1 has been significantly improved by G1 PAMAM dendrimers (a 75-fold increase in solubility in 10 mg/ml PAMAM dendrimer solutions compared with that in double-distilled water). Dendrimers contributed to 29-, 10-, and 16-fold increases in solubility of compounds 2, 3, and 4, respectively. However, on the basis of the result of this study, we cannot confirm that PAMAM 1.0 dendrimers contribute to greater solubility enhancement of those compounds which are less soluble in water than those better soluble.Fig. 1

Bottom Line: We reported that PAMAM dendrimers contribute to significant solubility enhancement of iminodiacetic acid analogues.The 2D-NOESY analysis revealed interactions between the primary amine groups of PAMAM dendrimers and the analogues of iminodiacetic acid.The results of solubility studies together with (1)H NMR and 2D-NOESY experiments suggest that the interactions between PAMAM dendrimers of generation 1-4 and derivatives of iminodiacetic acid are based on electrostatic interactions and internal encapsulation.Electronic supplementary material The online version of this article (doi:10.1007/s10867-012-9277-5) contains supplementary material, which is available to authorized users.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmaceutical Chemistry and Drug Analysis, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.

ABSTRACT
The interactions between dendrimers and different types of drugs are nowadays one of the most actively investigated areas of the pharmaceutical sciences. The interactions between dendrimers and drugs can be divided into: internal encapsulation, external electrostatic interaction, and covalent conjugation. In the present study, we investigated the potential of poly(amidoamine) (PAMAM) dendrimers for solubility of four iminodiacetic acid derivatives. We reported that PAMAM dendrimers contribute to significant solubility enhancement of iminodiacetic acid analogues. The nature of the dendrimer-drug complexes was investigated by (1)H NMR and 2D-NOESY spectroscopy. The (1)H NMR analysis proved that the water-soluble supramolecular structure of the complex was formed on the basis of ionic interactions between terminal amine groups of dendrimers and carboxyl groups of drug molecules, as well as internal encapsulation. The 2D-NOESY analysis revealed interactions between the primary amine groups of PAMAM dendrimers and the analogues of iminodiacetic acid. The results of solubility studies together with (1)H NMR and 2D-NOESY experiments suggest that the interactions between PAMAM dendrimers of generation 1-4 and derivatives of iminodiacetic acid are based on electrostatic interactions and internal encapsulation.Electronic supplementary material The online version of this article (doi:10.1007/s10867-012-9277-5) contains supplementary material, which is available to authorized users.

No MeSH data available.